1
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
2
|
Asefi MB, Heidari A, Hajikarim-Hamedani A, Mousavi Z, Ashabi G, Sadat-Shirazi MS, Zarrindast MR. Preconception ethanol exposure changes anxiety, depressive and checking-like behavior and alter the expression levels of MAO-B in male offspring. Neurotoxicol Teratol 2024; 104:107367. [PMID: 38866258 DOI: 10.1016/j.ntt.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Alcohol use, which alters the epigenome, increases the probability that it could affect subsequent generations, even if they were never directly exposed to ethanol or even in utero. We explored the effects of parental ethanol exposure before conception on behavioral changes in the offspring. Considering the role of Monoamine oxidase-B (MAO-B) in dopamine turnover in the prefrontal cortex (PFC) and its influence on behavior, and taking into account that ethanol exposure could alter MAO-B, we assessed the protein levels in the offspring. Male and female rats were exposed to ethanol for 30 days and then allowed ten days of abstinence. Afterward, they were mated with either control or ethanol-exposed rats. The F1 and F2 male offspring underwent tests to assess behavioral changes. Additionally, the levels of MAO-B in the PFC were evaluated. Results revealed that in the F1, anxiety increased only in the bi-parental ethanol-exposed male offspring in the elevated plus maze test (p < 0.05), while depressive-like behavior rose only in maternal and bi-parental ethanol-exposed offspring (p < 0.01). However, compulsive-like behavior increased in all ethanol-exposed offspring (p < 0.01). No significant phenotypic changes were observed in the F2. The levels of MAO-B in the PFC increased in the maternal (p < 0.05) and bi-parental ethanol-exposed offspring (p < 0.01). Our study demonstrates that parental ethanol exposure, even in the days preceding mating, adversely affects behaviors and induces molecular changes in the brain. Given these findings, it becomes imperative to monitor children exposed to parental (especially maternal) ethanol for the prevention of mental disorders.
Collapse
Affiliation(s)
- Mohammad Basir Asefi
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Zahra Mousavi
- Department of Pharmacology-Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hedayati-Moghadam M, Razazpour F, Pourfridoni M, Mirzaee F, Baghcheghi Y. Ethanol's impact on the brain: a neurobiological perspective on the mechanisms of memory impairment. Mol Biol Rep 2024; 51:782. [PMID: 38918289 DOI: 10.1007/s11033-024-09748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Alcohol consumption is known to have detrimental effects on memory function, with various studies implicating ethanol in the impairment of cognitive processes related to memory retention and retrieval. This review aims to elucidate the complex neurobiological mechanisms underlying ethanol-induced memory impairment. Through a thorough search of existing literature using electronic databases, relevant articles focusing on the neurobiological mechanisms of ethanol on memory were identified and critically evaluated. This review focuses on the molecular and neural pathways through which ethanol exerts its effects on memory formation, consolidation, and recall processes. Key findings from the included studies shed light on the impact of ethanol on neurotransmitter systems, synaptic plasticity, and neuroinflammation in relation to memory impairment. This review contributes to a better understanding of the intricate mechanisms by which alcohol impairs memory function, offering insights for future research directions and the development of targeted interventions to alleviate these cognitive impairments.
Collapse
Affiliation(s)
- Mahdiyeh Hedayati-Moghadam
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Faezeh Mirzaee
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran.
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
4
|
de Souza AM, Alves de Medeiros MC, Gomes-de-Lima JN, Luchiari AC. Multigenerational effects of alcohol: A behavioral study in three zebrafish populations. Neurotoxicology 2024; 103:115-122. [PMID: 38857677 DOI: 10.1016/j.neuro.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Fetal alcohol exposure can result in fetal alcohol spectrum disorder (FASD), which encompasses a range of cognitive and behavioral impairments. Although zebrafish have been used as a reliable model to study FASD, little is known about the ontogeny of this disorder and population differences in subsequent generations not directly exposed to alcohol. In this study, we evaluated the behavioral outcomes of zebrafish populations AB, Outbred (OB), and Tubingen (TU), offspring of parents exposed to alcohol during embryonic development. The offspring of adult fish with FASD (exposed to 1 % alcohol at the embryonic stage) was compared to the offspring of unexposed parental fish (0 % alcohol at the embryo phase). The behavioral profile of the offspring was assessed at 6 days post-fertilization (dpf) and 45 dpf. At 6dpf, the AB FASD offspring exhibited hyperactivity and increased time at the edge of the tank, while the TU and OB FASD offspring showed hypoactivity. At 45dpf, TU fish maintained the larval locomotor pattern, characterized by decreased average speed and total distance traveled and increased immobility. However, AB and OB fish did not show alterations in locomotor activity and anxiety-related responses at 45dpf. Our results demonstrate, for the first time, that FASD zebrafish offspring display behavioral differences, which were most evident during the early ontogenetic phase (6dpf) but may vary throughout animal ontogeny. TU fish exhibited the most consistent behavioral pattern across different developmental stages. These findings provide insights into the multigenerational and persistent behavioral consequences of embryonic alcohol exposure in zebrafish. Further research should focus on other features that can be inherited and the development of treatments for the offspring affected by it.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil; Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
5
|
Heidari N, Hajikarim-Hamedani A, Heidari A, Ghane Y, Ashabi G, Zarrindast MR, Sadat-Shirazi MS. Alcohol: Epigenome alteration and inter/transgenerational effect. Alcohol 2024; 117:27-41. [PMID: 38508286 DOI: 10.1016/j.alcohol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
While DNA serves as the fundamental genetic blueprint for an organism, it is not a static entity. Gene expression, the process by which genetic information is utilized to create functional products like proteins, can be modulated by a diverse range of environmental factors. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play a pivotal role in mediating the intricate interplay between the environment and gene expression. Intriguingly, alterations in the epigenome have the potential to be inherited across generations. Alcohol use disorder (AUD) poses significant health issues worldwide. Alcohol has the capability to induce changes in the epigenome, which can be inherited by offspring, thus impacting them even in the absence of direct alcohol exposure. This review delves into the impact of alcohol on the epigenome, examining how its effects vary based on factors such as the age of exposure (adolescence or adulthood), the duration of exposure (chronic or acute), and the specific sample collected (brain, blood, or sperm). The literature underscores that alcohol exposure can elicit diverse effects on the epigenome during different life stages. Furthermore, compelling evidence from human and animal studies demonstrates that alcohol induces alterations in epigenome content, affecting both the brain and blood. Notably, rodent studies suggest that these epigenetic changes can result in lasting phenotype alterations that extend across at least two generations. In conclusion, the comprehensive literature analysis supports the notion that alcohol exposure induces lasting epigenetic alterations, influencing the behavior and health of future generations. This knowledge emphasizes the significance of addressing the potential transgenerational effects of alcohol and highlights the importance of preventive measures to minimize the adverse impact on offspring.
Collapse
Affiliation(s)
- Nazila Heidari
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Rich MT, Swinford-Jackson SE, Pierce RC. Epigenetic inheritance of phenotypes associated with parental exposure to cocaine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:169-216. [PMID: 38467481 DOI: 10.1016/bs.apha.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Parental exposure to drugs of abuse induces changes in the germline that can be transmitted across subsequent generations, resulting in enduring effects on gene expression and behavior. This transgenerational inheritance involves a dynamic interplay of environmental, genetic, and epigenetic factors that impact an individual's vulnerability to neuropsychiatric disorders. This chapter aims to summarize recent research into the mechanisms underlying the inheritance of gene expression and phenotypic patterns associated with exposure to drugs of abuse, with an emphasis on cocaine. We will first define the epigenetic modifications such as DNA methylation, histone post-translational modifications, and expression of non-coding RNAs that are impacted by parental cocaine use. We will then explore how parental cocaine use induces heritable epigenetic changes that are linked to alterations in neural circuitry and synaptic plasticity within reward-related circuits, ultimately giving rise to potential behavioral vulnerabilities. This discussion will consider phenotypic differences associated with gestational as well as both maternal and paternal preconception drug exposure and will emphasize differences based on offspring sex. In this context, we explore the complex interactions between genetics, epigenetics, environment, and biological sex. Overall, this chapter consolidates the latest developments in the multigenerational effects and long-term consequences of parental substance abuse.
Collapse
Affiliation(s)
- Matthew T Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States.
| | - Sarah E Swinford-Jackson
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
7
|
Truong L, Chen YW, Barrere-Cain R, Levenson MT, Shuck K, Xiao W, da Veiga Beltrame E, Panter B, Reich E, Sternberg PW, Yang X, Allard P. Single-nucleus resolution mapping of the adult C. elegans and its application to elucidate inter- and trans-generational response to alcohol. Cell Rep 2023; 42:112535. [PMID: 37227821 PMCID: PMC10592506 DOI: 10.1016/j.celrep.2023.112535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Single-cell transcriptomic platforms provide an opportunity to map an organism's response to environmental cues with high resolution. Here, we applied single-nucleus RNA sequencing (snRNA-seq) to establish the tissue and cell type-resolved transcriptome of the adult C. elegans and characterize the inter- and trans-generational transcriptional impact of ethanol. We profiled the transcriptome of 41,749 nuclei resolving into 31 clusters, representing a diverse array of adult cell types including syncytial tissues. Following exposure to human-relevant doses of alcohol, several germline, striated muscle, and neuronal clusters were identified as being the most transcriptionally impacted at the F1 and F3 generations. The effect on germline clusters was confirmed by phenotypic enrichment analysis as well as by functional validation, which revealed a remarkable inter- and trans-generational increase in germline apoptosis, aneuploidy, and embryonic lethality. Together, snRNA-seq represents a valuable approach for the detailed examination of an adult organism's response to environmental exposures.
Collapse
Affiliation(s)
- Lisa Truong
- Human Genetics Graduate Program, UCLA, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Rio Barrere-Cain
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Max T Levenson
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Karissa Shuck
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Blake Panter
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Ella Reich
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Paul W Sternberg
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xia Yang
- Integrative Biology and Physiology Department, UCLA, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA; Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Chen K, Lu X, Xu D, Guo Y, Ao Y, Wang H. Prenatal exposure to corn oil, CMC-Na or DMSO affects physical development and multi-organ functions in fetal mice. Reprod Toxicol 2023; 118:108366. [PMID: 36958465 DOI: 10.1016/j.reprotox.2023.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Corn oil, sodium carboxymethyl cellulose (CMC-Na), and dimethyl sulfoxide (DMSO) are widely used as solvents or suspensions in animal experiments, but the effects of prenatal exposure to them on fetal development have not been reported. In this study, Kunming mice were given a conventional dose of corn oil (9.2g/kg·d), CMC-Na (0.05g/kg·d) or DMSO (0.088g/kg·d) during gestation days 10-18, and the pregnancy outcome, fetal physical development, serum phenotype, and multi-organ function changes were observed. The results showed that corn oil decreased serum triglyceride level in males but increased their serum testosterone and CORT levels, and affected female placenta and female/male multi-organ functions (mainly bone, liver, kidney). CMC-Na increased female/male body lengths and tail lengths, decreased serum glucose and total cholesterol levels in males as well as increased their serum LDL-C/HDL-C ratio and testosterone level, decreased female serum bile acid level, and affected male/female placenta and multi-organ functions (mainly bone, liver, hippocampus). DMSO decreased male body weight and serum glucose level, decreased male/female serum bile acid levels, and affected male/female placenta and multi-organs functions (mainly bone, hippocampus, adrenal gland). In conclusion, prenatal exposure to a conventional dose of corn oil, CMC-Na or DMSO could affect fetal physical development and multi-organ functions, and has the characteristics of "multi-pathway, multi-organ and multi-target". This study provides the experimental basis for the rational selection of solvents or suspensions in pharmacology and toxicology studies. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
9
|
Perez RF, Conner KE, Erickson MA, Nabatanzi M, Huffman KJ. Alcohol and lactation: Developmental deficits in a mouse model. Front Neurosci 2023; 17:1147274. [PMID: 36992847 PMCID: PMC10040541 DOI: 10.3389/fnins.2023.1147274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
It is well documented that prenatal ethanol exposure via maternal consumption of alcohol during pregnancy alters brain and behavioral development in offspring. Thus, the Centers for Disease Control (CDC) advises against maternal alcohol consumption during pregnancy. However, little emphasis has been placed on educating new parents about alcohol consumption while breastfeeding. This is partly due to a paucity of research on lactational ethanol exposure (LEE) effects in children; although, it has been shown that infants exposed to ethanol via breast milk frequently present with reduced body mass, low verbal IQ scores, and altered sleeping patterns. As approximately 36% of breastfeeding mothers in the US consume alcohol, continued research in this area is critical. Our study employed a novel murine LEE model, where offspring were exposed to ethanol via nursing from postnatal day (P) 6 through P20, a period correlated with infancy in humans. Compared to controls, LEE mice had reduced body weights and neocortical lengths at P20 and P30. Brain weights were also reduced in both ages in males, and at P20 for females, however, female brain weights recovered to control levels by P30. We investigated neocortical features and found that frontal cortex thickness was reduced in LEE males compared to controls. Analyses of dendritic spines in the prelimbic subdivision of medial prefrontal cortex revealed a trend of reduced densities in LEE mice. Results of behavioral tests suggest that LEE mice engage in higher risk-taking behavior, show abnormal stress regulation, and exhibit increased hyperactivity. In summary, our data describe potential adverse brain and behavioral developmental outcomes due to LEE. Thus, women should be advised to refrain from consuming alcohol during breastfeeding until additional research can better guide recommendations of safe maternal practices in early infancy.
Collapse
Affiliation(s)
- Roberto F. Perez
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kathleen E. Conner
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Michael A. Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Mirembe Nabatanzi
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J. Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Kelly J. Huffman,
| |
Collapse
|
10
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|