1
|
Chalard AE, Porritt H, Lam Po Tang EJ, Taberner AJ, Winbo A, Ahmad AM, Fitremann J, Malmström J. Dynamic composite hydrogels of gelatin methacryloyl (GelMA) with supramolecular fibers for tissue engineering applications. BIOMATERIALS ADVANCES 2024; 163:213957. [PMID: 39024864 DOI: 10.1016/j.bioadv.2024.213957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the field of tissue engineering, there is a growing need for biomaterials with structural properties that replicate the native characteristics of the extracellular matrix (ECM). It is important to include fibrous structures into ECM mimics, especially when constructing scar models. Additionally, including a dynamic aspect to cell-laden biomaterials is particularly interesting, since native ECM is constantly reshaped by cells. Composite hydrogels are developed to bring different combinations of structures and properties to a scaffold by using different types and sources of materials. In this work, we aimed to combine gelatin methacryloyl (GelMA) with biocompatible supramolecular fibers made of a small self-assembling sugar-derived molecule (N-heptyl-D-galactonamide, GalC7). The GalC7 fibers were directly grown in the GelMA through a thermal process, and it was shown that the presence of the fibrous network increased the Young's modulus of GelMA. Due to the non-covalent interactions that govern the self-assembly, these fibers were observed to dissolve over time, leading to a dynamic softening of the composite gels. Cardiac fibroblast cells were successfully encapsulated into composite gels for 7 days, showing excellent biocompatibility and fibroblasts extending in an elongated morphology, most likely in the channels left by the fibers after their degradation. These novel composite hydrogels present unique properties and could be used as tools to study biological processes such as fibrosis, vascularization and invasion.
Collapse
Affiliation(s)
- Anaïs E Chalard
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Emily J Lam Po Tang
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand; Manaaki Manawa Centre for Heart Research, The University of Auckland, Auckland, New Zealand
| | - Amatul M Ahmad
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Juliette Fitremann
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
2
|
Zambuto SG, Kolluru SS, Hamdaoui A, Mascot AM, Sutcliffe SS, Lowder JL, Oyen ML. Vaginal Tissue Engineering via Gelatin-Elastin Fiber-Reinforced Hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611932. [PMID: 39314486 PMCID: PMC11419003 DOI: 10.1101/2024.09.09.611932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The vagina is a fibromuscular tube-shaped organ spanning from the hymenal ring to the cervix that plays critical roles in menstruation, pregnancy, and female sexual health. Vaginal tissue constituents, including cells and extracellular matrix components, contribute to tissue structure, function, and prevention of injury. However, much microstructural function remains unknown, including how the fiber-cell and cell-cell interactions influence macromechanical properties. A deeper understanding of these interactions will provide critical information needed to reduce and prevent vaginal injuries. Our objectives for this work herein are to first engineer a suite of biomaterials for vaginal tissue engineering and second to characterize the performance of these biomaterials in the vaginal microenvironment. We successfully created fiber-reinforced hydrogels of gelatin-elastin electrospun fibers infiltrated with gelatin methacryloyl hydrogels. These composites recapitulate vaginal material properties, including stiffness, and are compatible with the vaginal microenvironment: biocompatible with primary vaginal epithelial cells and in acidic conditions. This work significantly advances progress in vaginal tissue engineering by developing novel materials and developing a state-of-the-art tissue engineered vagina.
Collapse
|
3
|
Wu HF, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2024. [PMID: 39235952 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Charlotte Hamilton
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Harrison Porritt
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Zhurenkov KE, Akbarinejad A, Porritt H, Horrocks MS, Malmström J. Colloidal Probe Technique Optimization for Determination of Young's Modulus of Soft Adhesive Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39023221 DOI: 10.1021/acs.langmuir.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atomic force microscopy (AFM) is a valuable tool for determining the Young's modulus of a wide range of materials. However, it faces challenges, particularly when assessing adhesive materials like soft poly(N-isopropylacrylamide) (pNIPAM) hydrogels. This study focuses on enhancing the consistency and reliability of AFM measurements by functionally modifying AFM spherical tip cantilevers to address substrate adhesion issues with these hydrogels. Specifically, hydrophobic functionalization with 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOCTS) emerged as the most effective approach, yielding consistent and reliable Young's modulus data across various pNIPAM hydrogel samples. This work highlights the importance of optimizing data acquisition in AFM, rather than relying on postprocessing, to reduce inconsistencies in Young's modulus assessment.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Alireza Akbarinejad
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Matthew S Horrocks
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| |
Collapse
|
5
|
Smits JJHM, van der Pol A, Goumans MJ, Bouten CVC, Jorba I. GelMA hydrogel dual photo-crosslinking to dynamically modulate ECM stiffness. Front Bioeng Biotechnol 2024; 12:1363525. [PMID: 38966190 PMCID: PMC11222782 DOI: 10.3389/fbioe.2024.1363525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
The dynamic nature of the extracellular matrix (ECM), particularly its stiffness, plays a pivotal role in cellular behavior, especially after myocardial infarction (MI), where cardiac fibroblasts (cFbs) are key in ECM remodeling. This study explores the effects of dynamic stiffness changes on cFb activation and ECM production, addressing a gap in understanding the dynamics of ECM stiffness and their impact on cellular behavior. Utilizing gelatin methacrylate (GelMA) hydrogels, we developed a model to dynamically alter the stiffness of cFb environment through a two-step photocrosslinking process. By inducing a quiescent state in cFbs with a TGF-β inhibitor, we ensured the direct observation of cFbs-responses to the engineered mechanical environment. Our findings demonstrate that the mechanical history of substrates significantly influences cFb activation and ECM-related gene expression. Cells that were initially cultured for 24 h on the soft substrate remained more quiescent when the hydrogel was stiffened compared to cells cultured directly to a stiff static substrate. This underscores the importance of past mechanical history in cellular behavior. The present study offers new insights into the role of ECM stiffness changes in regulating cellular behavior, with significant implications for understanding tissue remodeling processes, such as in post-MI scenarios.
Collapse
Affiliation(s)
- Josephina J. H. M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Ignasi Jorba
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Agrawal P, Tiwari A, Chowdhury SK, Vohra M, Gour A, Waghmare N, Bhutani U, Kamalnath S, Sangwan B, Rajput J, Raj R, Rajendran NP, Kamath AV, Haddadin R, Chandru A, Sangwan VS, Bhowmick T. Kuragel: A biomimetic hydrogel scaffold designed to promote corneal regeneration. iScience 2024; 27:109641. [PMID: 38646166 PMCID: PMC11031829 DOI: 10.1016/j.isci.2024.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.
Collapse
Affiliation(s)
| | - Anil Tiwari
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | - Mehak Vohra
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Abha Gour
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | | | - S. Kamalnath
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Jyoti Rajput
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Ritu Raj
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | | | - Ramez Haddadin
- Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Arun Chandru
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Tuhin Bhowmick
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Pandorum International Inc, San Francisco, CA, USA
| |
Collapse
|
7
|
Jorba I, Gussenhoven S, van der Pol A, Groenen BG, van Zon M, Goumans MJ, Kurniawan NA, Ristori T, Bouten CV. Steering cell orientation through light-based spatiotemporal modulation of the mechanical environment. Biofabrication 2024; 16:035011. [PMID: 38574554 DOI: 10.1088/1758-5090/ad3aa6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The anisotropic organization of cells and the extracellular matrix (ECM) is essential for the physiological function of numerous biological tissues, including the myocardium. This organization changes gradually in space and time, during disease progression such as myocardial infarction. The role of mechanical stimuli has been demonstrated to be essential in obtaining, maintaining and de-railing this organization, but the underlying mechanisms are scarcely known. To enable the study of the mechanobiological mechanisms involved,in vitrotechniques able to spatiotemporally control the multiscale tissue mechanical environment are thus necessary. Here, by using light-sensitive materials combined with light-illumination techniques, we fabricated 2D and 3Din vitromodel systems exposing cells to multiscale, spatiotemporally resolved stiffness anisotropies. Specifically, spatial stiffness anisotropies spanning from micron-sized (cellular) to millimeter-sized (tissue) were achieved. Moreover, the light-sensitive materials allowed to introduce the stiffness anisotropies at defined timepoints (hours) after cell seeding, facilitating the study of their temporal effects on cell and tissue orientation. The systems were tested using cardiac fibroblasts (cFBs), which are known to be crucial for the remodeling of anisotropic cardiac tissue. We observed that 2D stiffness micropatterns induced cFBs anisotropic alignment, independent of the stimulus timing, but dependent on the micropattern spacing. cFBs exhibited organized alignment also in response to 3D stiffness macropatterns, dependent on the stimulus timing and temporally followed by (slower) ECM co-alignment. In conclusion, the developed model systems allow improved fundamental understanding of the underlying mechanobiological factors that steer cell and ECM orientation, such as stiffness guidance and boundary constraints.
Collapse
Affiliation(s)
- Ignasi Jorba
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sil Gussenhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bart Gw Groenen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten van Zon
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Carlijn Vc Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
8
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
9
|
Walejewska E, Melchels FPW, Paradiso A, McCormack A, Szlazak K, Olszewska A, Srebrzynski M, Swieszkowski W. Tuning Physical Properties of GelMA Hydrogels through Microarchitecture for Engineering Osteoid Tissue. Biomacromolecules 2024; 25:188-199. [PMID: 38102990 PMCID: PMC11106746 DOI: 10.1021/acs.biomac.3c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant attention due to their biocompatibility and tunable properties. Here, a new approach to engineer GelMA-based matrices to mimic the osteoid matrix is provided. Two cross-linking methods were employed to mimic the tissue stiffness: standard cross-linking (SC) based on visible light exposure (VL) and dual cross-linking (DC) involving physical gelation, followed by VL. It was demonstrated that by reducing the GelMA concentration from 10% (G10) to 5% (G5), the dual-cross-linked G5 achieved a compressive modulus of ∼17 kPa and showed the ability to support bone formation, as evidenced by alkaline phosphatase detection over 3 weeks of incubation in osteogenic medium. Moreover, incorporating poly(ethylene) oxide (PEO) into the G5 and G10 samples was found to hinder the fabrication of highly porous hydrogels, leading to compromised cell survival and reduced osteogenic differentiation, as a consequence of incomplete PEO removal.
Collapse
Affiliation(s)
- Ewa Walejewska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
- Centre
for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, Warsaw 02-822, Poland
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland
- Future
Industries Institute, University of South
Australia, Adelaide, South Australia 5095, Australia
| | - Alessia Paradiso
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Andrew McCormack
- Institute
of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland
| | - Karol Szlazak
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Alicja Olszewska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Michal Srebrzynski
- Department
of Transplantology and Central Tissue Bank, Medical University of Warsaw, Chalubinskiego 5, Warsaw 02-004, Poland
- National
Centre for Tissue and Cell Banking, Chalubinskiego 5, Warsaw 02-004, Poland
| | - Wojciech Swieszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| |
Collapse
|
10
|
Duong VT, Lin CC. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization. Macromol Biosci 2023; 23:e2300213. [PMID: 37536347 PMCID: PMC10837335 DOI: 10.1002/mabi.202300213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo-reactive bioinks. Norbornene-based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post-printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin-norbornene (GelNB) is reported as a photo-cross-linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2-5 wt.%) and poly(ethylene glycol)-tetra-thiol (PEG4SH) are DLP-printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP-printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)-mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP-printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
12
|
Du P, Chen X, Chen Y, Li J, Lu Y, Li X, Hu K, Chen J, Lv G. In vivo and in vitro studies of a propolis-enriched silk fibroin-gelatin composite nanofiber wound dressing. Heliyon 2023; 9:e13506. [PMID: 36895376 PMCID: PMC9988512 DOI: 10.1016/j.heliyon.2023.e13506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, electrospun nanofibers (NFs) used in trauma dressings were prepared using silk fibroin (SF) and gelatin (GT) as materials and highly volatile formic acid as the solvent, with three different concentrations of propolis extracts (EP), which were loaded through a simple process. The resulting samples were characterized by surface morphology, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle meter, water absorption, degradation rate, and mechanical property tests. The incorporation of propolis improved its antibacterial properties against Escherichia coli, and Staphylococcus aureus, compared to those of the silk gelatin nanofiber material (SF/GT) alone. In vitro biocompatibility assays showed that SF/GT-1%EP had good cytocompatibility and hemocompatibility. In addition, it can also significantly promote the migration of L929 cells. SF/GT-1%EP was applied to a mouse model of full thickness skin defects, and it was found to significantly promote wound healing. These results indicate that the SF/GT-EP nanofiber material has good biocompatibility, migrating-promoting capability, antibacterial properties, and healing-promoting ability, providing a new idea for the treatment of full thickness skin defects.
Collapse
Affiliation(s)
- Pan Du
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Xue Chen
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Jin Li
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Yichi Lu
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Xiaoxiao Li
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Kai Hu
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Junfeng Chen
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Guozhong Lv
- The Affifiliated Hospital of Jiangnan University, Jiangsu, 214000, China
- Corresponding author.
| |
Collapse
|