1
|
Rajha HE, Abdelaal R, Charfi K, Alemadi AO, Al-Sheraim AS, Al-Maadid MA, Louati Y, Doi S, Khaled SM. Examining depression, antidepressants use, and class and their potential associations with osteoporosis and fractures in adult women: Results from ten NHANES cohorts. J Affect Disord 2024:S0165-0327(24)01808-1. [PMID: 39490674 DOI: 10.1016/j.jad.2024.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Osteoporosis, a significant public health concern, affects millions of adult women globally, leading to increased morbidity and fracture risk. Antidepressant use, prevalent in this demographic, is suggested to influence bone mineral density (BMD), yet evidence remains limited across antidepressant classes. OBJECTIVE/AIM We investigated the association between antidepressant use and osteoporosis in a representative sample of adult women in the United States, focusing on different classes of antidepressants and their potential associations with BMD and fracture risk. METHODS We conducted a cross-sectional analysis using data from ten cohorts of the National Health and Nutrition Examination Survey (NHANES) spanning 1999-2000 to 2017-2020. The sample included adult women, with data collected on antidepressant use, BMD scores, and reported fractures. Statistical models adjusted for potential confounders such as Major Depressive Disorder (MDD), age, physical activity, and comorbidities. RESULTS Antidepressant use was associated with a 44 % increase in the odds of osteoporosis. Phenylpiperazines showed the highest association, followed by miscellaneous antidepressants and tricyclic antidepressants (TCAs). Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) also demonstrated significant, though comparatively lower associations. The odds of fractures were elevated by 62 % among antidepressant users, particularly with phenylpiperazines and miscellaneous antidepressants. Increased antidepressant use duration significantly correlated with higher osteoporosis and fracture risks, regardless of the antidepressant class. CONCLUSION Our findings underscore the need for heightened awareness of the adverse effects of antidepressants on bone health, particularly in adult women. Careful consideration is necessary when prescribing these medications, especially in populations at risk for osteoporosis and MDD.
Collapse
Affiliation(s)
- Humam Emad Rajha
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Reem Abdelaal
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Khouloud Charfi
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Aisha O Alemadi
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Alyaa S Al-Sheraim
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Youssef Louati
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Suhail Doi
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Salma M Khaled
- College of Medicine, Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Knani L, Venditti M, Rouis H, Minucci S, Messaoudi I. Effects of dopaminergic neuron degeneration on osteocyte apoptosis and osteogenic markers in 6-OHDA male rat model of Parkinson's disease. Bone 2024; 190:117271. [PMID: 39369834 DOI: 10.1016/j.bone.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Parkinson's disease (PD) and osteoporosis are prevalent chronic conditions that impact a significant proportion of the aging population. Observational and longitudinal studies consistently demonstrate that individuals with PD face an elevated risk of osteoporosis and reduced bone mineral density compared to control groups. However, there is currently no experimental evidence demonstrating the impact of dopaminergic neuron degeneration on bone metabolism. In the present study, we used a male rat model of PD induced by unilateral injection of 6-hydroxydopamine (6-OHDA) in the left medial forebrain bundle (MFB) to evaluate the effect of dopaminergic neuron lesion on certain parameters of bone metabolism. To confirm the dopaminergic neuron lesion, cylinder and Rotarod tests were applied to rats injected with 6-OHDA or vehicle. Osteocyte density and viability were determined through histology and TUNEL assay. Western Blot and immunohistochemistry analysis were performed to investigate whether dopaminergic degeneration influences the expression of some apoptotic markers (Caspase 3 and Cytochrome C) and some osteogenic markers (ALP, OCN, and RUNX2). Our findings show that the dopaminergic lesion resulting from the injection of 6-OHDA was successfully confirmed through behavioral tests. Furthermore, the degeneration of dopaminergic neurons induced by 6-OHDA leads to apoptosis of osteocytes associated with a significant reduction in the tissue expression of the studied osteogenic markers. Thus, our study provides evidence that 6-OHDA-induced degeneration of dopaminergic neurons leads to osteocyte apoptosis, which may contribute to the development of some signs of osteoporosis.
Collapse
Affiliation(s)
- Latifa Knani
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia.
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Hajer Rouis
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
3
|
Wang F, Li H, Yi K, Wu Y, Bian Q, Guo B, Luo X, Kang Y, Wu Q, Ma Q. Long-term second-generation antipsychotics decreases bone formation and resorption in male patients with schizophrenia. Psychopharmacology (Berl) 2024; 241:1771-1780. [PMID: 38647696 DOI: 10.1007/s00213-024-06592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
RATIONALE Patients with schizophrenia with second-generation antipsychotics (SGAs) treatment have shown an increased risk of bone fragility and susceptibility to fracture; however, it is still unclear whether this risk is derived from the effect of antipsychotics on balance of bone metabolism. OBJECTIVES We investigated the changes of two bone turnover biomarkers (BTMs) concentrations in people with schizophrenia receiving SGAs: procollagen type I aminoterminal propeptide (PINP) and C-terminal telopeptide of type I collagen (CTX-1) as BTMs of osteogenesis and bone resorption, respectively, to explore how antipsychotics contribute to bone fragility. METHODS We recruited 59 Chinese male patients with schizophrenia (32 drug-naïve first-episode (DNFE) patients and 27 chronic patients) to undergo 8 weeks SGAs treatment. Fasting peripheral blood samples of pre- and posttreatment were collected, plasma levels of PINP and CTX-1 were measured. RESULTS The interaction effects of group and time on PINP and CTX-1 concentrations were found (P = .016 and P = .008). There was a significant decrease for both BTMs concentrations of the posttreatment compared to the pretreatment (P<.001 and P = .003). Chronic patients had significantly higher changes of BTMs concentrations compared to DNFE patients (P = .048 and P = .024). There was a positive correlation of the two BTMs of pretreatment with disease course in DNFE group (r = .37, P = .039;r = .38, P = .035) and a negative correlation of PINP of pretreatment with age in the chronic group (r=-.40, P = .039). CONCLUSION Long-term SGAs medication inhibited osteogenesis in a dose- and time-dependent manner and damaged the balance of bone formation and bone resorption.
Collapse
Affiliation(s)
- Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China.
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China.
| | - Hui Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Kaijun Yi
- Department of Orthopedics, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang, 441000, Hubei, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Qingtao Bian
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Baoyan Guo
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Qi Wu
- Fenyang College, Shanxi Medical University, Lvliang, 032200, China
- Department of Psychiatry, Changzhou Peace Hospital, The 102nd Hospital of The Chinese People's Liberation Army, Changzhou, 213003, China
| | - Qinghe Ma
- Department of Psychiatry, Changzhou Peace Hospital, The 102nd Hospital of The Chinese People's Liberation Army, Changzhou, 213003, China
- Department of Internal Medicine, The 904th Hospital of The Chinese People's Liberation Army, Wuxi, 214004, China
| |
Collapse
|
4
|
Guan Z, Liu Y, Luo L, Jin X, Guan Z, Yang J, Liu S, Tao K, Pan J. Sympathetic innervation induces exosomal miR-125 transfer from osteoarthritic chondrocytes, disrupting subchondral bone homeostasis and aggravating cartilage damage in aging mice. J Adv Res 2024:S2090-1232(24)00122-X. [PMID: 38554999 DOI: 10.1016/j.jare.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a progressive disease that poses a significant threat to human health, particularly in aging individuals: Although sympathetic activation has been implicated in bone metabolism, its role in the development of OA related to aging remains poorly understood. Therefore, this study aimed to investigate how sympathetic regulation impacts aging-related OA through experiments conducted both in vivo and in vitro. METHODS To analyze the effect of sympathetic regulation on aging-related OA, we conducted experiments using various mouse models. These models included a natural aging model, a medial meniscus instability model, and a load-induced model, which were used to examine the involvement of sympathetic nerves. In order to evaluate the expression levels of β1-adrenergic receptor (Adrβ1) and sirtuin-6 (Sirt6) in chondrocytes of naturally aging OA mouse models, we performed assessments. Additionally, we investigated the influence of β1-adrenergic receptor knockout or treatment with a β1-adrenergic receptor blocker on the progression of OA in aging mice and detected exosome release and detected downstream signaling expression by inhibiting exosome release. Furthermore, we explored the impact of sympathetic depletion through tyrosine hydroxylase (TH) on OA progression in aging mice. Moreover, we studied the effects of norepinephrine(NE)-induced activation of the β1-adrenergic receptor signaling pathway on the release of exosomes and miR-125 from chondrocytes, subsequently affecting osteoblast differentiation in subchondral bone. RESULTS Our findings demonstrated a significant increase in sympathetic activity, such as NE levels, in various mouse models of OA including natural aging, medial meniscus instability, and load-induced models. Notably, we observed alterations in the expression levels of β1-adrenergic receptor and Sirt6 in chondrocytes in OA mouse models associated with natural aging, leading to an improvement in the progression of OA. Critically, we found that the knockout of β1-adrenergic receptor or treatment with a β1-adrenergic receptor blocker attenuated OA progression in aging mice and the degraded cartilage explants produced more exosome than the nondegraded ones, Moreover, sympathetic depletion through TH was shown to ameliorate OA progression in aging mice. Additionally, we discovered that NE-induced activation of the β1-adrenergic receptor signaling pathway facilitated the release of exosomes and miR-125 from chondrocytes, promoting osteoblast differentiation in subchondral bone. CONCLUSION In conclusion, our study highlights the role of sympathetic innervation in facilitating the transfer of exosomal miR-125 from osteoarthritic chondrocytes, ultimately disrupting subchondral bone homeostasis and exacerbating cartilage damage in aging mice. These findings provide valuable insights into the potential contribution of sympathetic regulation to the pathogenesis of aging-related OA.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China; Science and Technology Center, Fenyang College of Shanxi Medical University, Shanxi 032200, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200080, China
| | - Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jianjun Yang
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jianfeng Pan
- Science and Technology Center, Fenyang College of Shanxi Medical University, Shanxi 032200, China.
| |
Collapse
|
5
|
Ricci V, De Berardis D, Maina G. Third-Generation Antipsychotics and Lurasidone in the Treatment of Substance-Induced Psychoses: A Narrative Review. Healthcare (Basel) 2024; 12:339. [PMID: 38338224 PMCID: PMC10855531 DOI: 10.3390/healthcare12030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This narrative review explores the efficacy and tolerability of third-generation antipsychotics (TGAs)-aripiprazole, cariprazine, brexpiprazole, and lurasidone-for the management of substance-induced psychosis (SIP). SIP is a psychiatric condition triggered by substance misuse or withdrawal, characterized by unique features distinct from those of primary psychotic disorders. These distinctive features include a heightened prevalence of positive symptoms, such as hallucinations and delusions, in addition to a spectrum of mood and cognitive disturbances. This review comprehensively investigates various substances, such as cannabinoids, cocaine, amphetamines, and LSD, which exhibit a greater propensity for inducing psychosis. TGAs exhibit substantial promise in addressing both psychotic symptoms and issues related to substance misuse. This review elucidates the distinctive pharmacological properties of each TGA, their intricate interactions with neurotransmitters, and their potential utility in the treatment of SIP. We advocate for further research to delineate the long-term effects of TGAs in this context and underscore the necessity for adopting an integrated approach that combines pharmacological and psychological interventions. Our findings underscore the intricate and multifaceted nature of treating SIP, highlighting the potential role of TGAs within therapeutic strategies.
Collapse
Affiliation(s)
- Valerio Ricci
- San Luigi Gonzaga Hospital, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital “G. Mazzini”, ASL 4, 64100 Teramo, Italy;
| | - Giuseppe Maina
- San Luigi Gonzaga Hospital, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Torino, Italy
| |
Collapse
|
6
|
Li Z, Yang C, Wang J, Zheng K, Luo W. The application of CGF combined with GBR in alveolar bone increment for patients with anxiety disorder: A rare case report and literature review. Medicine (Baltimore) 2023; 102:e35905. [PMID: 37960737 PMCID: PMC10637472 DOI: 10.1097/md.0000000000035905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs), one of the commonly used anti-anxiety drugs, may have impacts on bone metabolism and potentially lead to drug-induced osteoporosis. The traditional approach of oral implantation in individuals with both anxiety disorder and drug-induced osteoporosis poses a significant challenge. To address this issue, concentrated growth factor (CGF) has been utilized in patients undergoing concurrent alveolar ridge augmentation during oral implantation, resulting in favorable clinical outcomes. Consequently, combining CGF with guided bone regeneration (GBR) in alveolar bone increment may represent a promising new surgical approach for such patients. In this report, we present a case study of a 25-year-old male with anxiety disorder and drug-induced osteoporosis, in who CGF combined with GBR was employed in alveolar bone increment. PATIENT CONCERNS This article reports the case of a 25-year-old male who underwent cone beam computed tomography (CBCT) due to the absence of his right lower second molar for a period of six months. The CBCT scan revealed significant bone defects, which were attributed to the tooth loss and prolonged use of anti-anxiety drugs. Consequently, the patient sought medical assistance from our department. DIAGNOSES Based on the patient's self-report, he was diagnosed with an anxiety disorder. Additionally, the CBCT scan confirmed the loss of the right mandibular second molar and revealed the presence of dental irregularity and an alveolar bone defect. INTERVENTIONS During the patient's course of treatment with anti-anxiety medication, a combination of CGF and GBR was employed for the simultaneous implantation of the missing right mandibular second molar, along with bone augmentation. OUTCOMES The patient had a follow-up visit two weeks after the surgical procedure, and the wound in the operation area had healed satisfactorily. Six months later, CBCT images revealed excellent osseointegration. The buccal and lingual width of the alveolar bone measured 6.95mm, which was an increase of 1.35mm compared to the pre-implantation stage. LESSONS This article presents a case study in which CGF combined with GBR were utilized to address alveolar bone augmentation during the implantation phase in patients taking anti-anxiety medication. The results demonstrated that CGF combined with GBR, as a cutting-edge platelet concentrate technique, could effectively stimulate bone tissue proliferation in individuals who have been on long-term anti-anxiety medication, specifically in oral implant areas. This approach can help prevent poor osseointegration, promote higher osseointegration rates, and facilitate wound healing.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Stomatology, First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Chao Yang
- Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
- Research and Development Department, Shenzhen Uni-medica Technology CO., Ltd, Shenzhen, China
| | - Jinrong Wang
- Department of Stomatology, First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Kaiyue Zheng
- Department of Stomatology, First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Wen Luo
- Department of Stomatology, First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Rifai A, Weerasinghe DK, Tilaye GA, Nisbet D, Hodge JM, Pasco JA, Williams LJ, Samarasinghe RM, Williams RJ. Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature. Front Bioeng Biotechnol 2023; 11:1185841. [PMID: 37614632 PMCID: PMC10444209 DOI: 10.3389/fbioe.2023.1185841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Damage to bone leads to pain and loss of movement in the musculoskeletal system. Although bone can regenerate, sometimes it is damaged beyond its innate capacity. Research interest is increasingly turning to tissue engineering (TE) processes to provide a clinical solution for bone defects. Despite the increasing biomimicry of tissue-engineered scaffolds, significant gaps remain in creating the complex bone substitutes, which include the biochemical and physical conditions required to recapitulate bone cells' natural growth, differentiation and maturation. Combining advanced biomaterials with new additive manufacturing technologies allows the development of 3D tissue, capable of forming cell aggregates and organoids based on natural and stimulated cues. Here, we provide an overview of the structure and mechanical properties of natural bone, the role of bone cells, the remodelling process, cytokines and signalling pathways, causes of bone defects and typical treatments and new TE strategies. We highlight processes of selecting biomaterials, cells and growth factors. Finally, we discuss innovative tissue-engineered models that have physiological and anatomical relevance for cancer treatments, injectable stimuli gels, and other therapeutic drug delivery systems. We also review current challenges and prospects of bone TE. Overall, this review serves as guide to understand and develop better tissue-engineered bone designs.
Collapse
Affiliation(s)
- Aaqil Rifai
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - D. Kavindi Weerasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Gebreselassie Addisu Tilaye
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - David Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Laboratory of Advanced Biomaterials, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jason M. Hodge
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A. Pasco
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - Lana J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Rasika M. Samarasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|