1
|
Billet K, Thibon C, Badet ML, Wirgot N, Noret L, Nikolantonaki M, Gougeon RD. White wines aged in barrels with controlled tannin potential exhibit correlated long-term oxidative stability in bottle. Food Chem X 2024; 24:101907. [PMID: 39525052 PMCID: PMC11547895 DOI: 10.1016/j.fochx.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Chardonnay and Sauvignon blanc wines aged in oak wood barrels with low and medium tannin potentials were discriminated for their abilities to resist against oxidation during bottle storage. The oak wood tannin potential was positively correlated to wines antioxidant capacity after 2 and 4 years of bottle aging. Untargeted molecular analysis revealed that the Sauvignon blanc metabolome was more affected by the tannin potential than the Chardonnay. Supervised statistical analysis highlighted the extensive oak wood contribution to the wine chemical fingerprints. Wines aged in barrel of medium tannin potential were associated with higher concentrations in antioxidant compounds such as dipeptides. Moreover, quantitative differences were observed between oak barrel derived volatile compounds. Sauvignon blanc volatile thiols appeared to decrease during bottle aging, regardless of the oak tannin potential. This study highlights the post bottling positive impact of oak wood barrel aging on wines oxidative stability, related to oak barrel tannin potential.
Collapse
Affiliation(s)
- Kevin Billet
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Cécile Thibon
- Université de Bordeaux, Bordeaux INP, INRAE, UMR 1366 OENO, ISVV, F-33140 Villenave d'Ornon, France
| | | | - Nolwenn Wirgot
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Laurence Noret
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Maria Nikolantonaki
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| | - Regis D. Gougeon
- Université de Bourgogne, Institut Agro, INRAe, UMR PAM 1517, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France
| |
Collapse
|
2
|
Sousa Silva M, Soeiro M, Cordeiro C. From the grapevine to the glass: A wine metabolomics tale by FT-ICR-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5019. [PMID: 38605464 DOI: 10.1002/jms.5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
Wine is one of the most consumed beverages around the world. Its unique characteristics arise from numerous processes, from the selection of grapevine varieties and grapes, the effect of the terroir and geographical origin, through the biochemical process of fermentation by microorganisms, until its aging. All molecules found in wine define its chemical fingerprint and can be used to tell the story of its origin, production, authenticity and quality. Wine's chemical composition can be characterized using an untargeted metabolomics approach based on extreme resolution mass spectrometry. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is currently the most powerful analytical technique to analyse such complex sample, providing the most comprehensive analysis of the chemical fingerprint of wine.
Collapse
Affiliation(s)
- Marta Sousa Silva
- FT-ICR and Structural Mass Spectrometry Laboratory, Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica Soeiro
- FT-ICR and Structural Mass Spectrometry Laboratory, Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Cordeiro
- FT-ICR and Structural Mass Spectrometry Laboratory, Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Metagenomic bacterial diversity and metabolomics profiling of Buttafuoco wine production. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Ollivier S, Jéhan P, Olivier‐Jimenez D, Lambert F, Boustie J, Lohézic‐Le Dévéhat F, Le Yondre N. New insights into the Van Krevelen diagram: Automated molecular formula determination from HRMS for a large chemical profiling of lichen extracts. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1111-1120. [PMID: 35789004 PMCID: PMC9796888 DOI: 10.1002/pca.3163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/26/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION In recent years, LC-MS has become the golden standard for metabolomic studies. Indeed, LC is relatively easy to couple with the soft electrospray ionization. As a consequence, many tools have been developed for the structural annotation of tandem mass spectra. However, it is sometimes difficult to do data-dependent acquisition (DDA), especially when developing new methods that stray from the classical LC-MS workflow. OBJECTIVE An old tool from petroleomics that has recently gained popularity in metabolomics, the Van Krevelen diagram, is adapted for an overview of the molecular diversity profile in lichens through high-resolution mass spectrometry (HRMS). METHODS A new method is benchmarked against the state-of-the-art classification tool ClassyFire using a database containing most known lichen metabolites (n ≈ 2,000). Four lichens known for their contrasted chemical composition were selected, and extractions with apolar, aprotic polar, and protic polar solvents were performed to cover a wide range of polarities. Extracts were analyzed with direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) and atmospheric solids analysis probe mass spectrometry (ASAP-MS) techniques to be compared with the chemical composition described in the literature. RESULTS The most common lichen metabolites were efficiently classified, with more than 90% of the molecules in some classes being matched with ClassyFire. Results from this method are consistent with the various extraction protocols in the present case study. CONCLUSION This approach is a rapid and efficient tool to gain structural insight regarding lichen metabolites analyzed by HRMS without relying on DDA by LC-MS/MS analysis. It may notably be of use during the development phase of novel MS-based metabolomic approaches.
Collapse
Affiliation(s)
- Simon Ollivier
- CNRS, ScanMAT UAR 2025, CRMPO (Centre Régional de Mesures Physiques de l'Ouest)Univ RennesRennesFrance
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226Univ RennesRennesFrance
- Present address:
INRAE, UR BIA, F‐44300 Nantes, France and INRAEPROBE research infrastructure, BIBS facilityF‐44300Nantes, France
| | - Philippe Jéhan
- CNRS, ScanMAT UAR 2025, CRMPO (Centre Régional de Mesures Physiques de l'Ouest)Univ RennesRennesFrance
| | - Damien Olivier‐Jimenez
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226Univ RennesRennesFrance
| | - Fabian Lambert
- CNRS, ScanMAT UAR 2025, CRMPO (Centre Régional de Mesures Physiques de l'Ouest)Univ RennesRennesFrance
| | - Joël Boustie
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226Univ RennesRennesFrance
| | | | - Nicolas Le Yondre
- CNRS, ScanMAT UAR 2025, CRMPO (Centre Régional de Mesures Physiques de l'Ouest)Univ RennesRennesFrance
| |
Collapse
|
5
|
Untargeted metabolomic analysis by ultra-high-resolution mass spectrometry for the profiling of new Italian wine varieties. Anal Bioanal Chem 2022; 414:7805-7812. [PMID: 36121471 DOI: 10.1007/s00216-022-04314-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/01/2022]
Abstract
The chemical composition of wine samples comprises numerous bioactive compounds responsible for unique flavor and health-promoting properties. Thus, it's important to have a complete overview of the metabolic profile of new wine products in order to obtain peculiar information in terms of their phytochemical composition, quality, and traceability. To achieve this aim, in this work, a mass spectrometry-based phytochemical screening was performed on seven new wine products from Villa D'Agri in the Basilicata region (Italy), i.e., Aglianico Bianco, Plavina, Guisana, Giosana, Malvasia ad acino piccolo, Colata Murro and Santa Sofia. Ultra-high-resolution mass spectrometry data were processed into absorption mode FT-ICR mass spectra, in order to remove artifacts and achieve a higher resolution and lower levels of noise. Accurate mass-to-charge ratio (m/z) values were converted into putative elemental formulas. Therefore, 2D van Krevelen diagrams were used as a tool to obtain molecular formula maps useful to perform a rapid and more comprehensive analysis of the wine sample metabolome. The presence of important metabolite classes, i.e., fatty acid derivatives, amino acids and peptides, carbohydrates and phenolic derivatives, was assessed. Moreover, the comparison of obtained metabolomic maps revealed some differences among profiles, suggesting their employment as metabolic fingerprints. This study shed some light on the metabolic composition of seven new Italian wine varieties, improving their value in terms of related bioactive compound content. Moreover, different metabolomic fingerprints were obtained for each of them, suggesting the use of molecular maps as innovative tool to ascertain their unique metabolic profile.
Collapse
|
6
|
Awale M, Liu C, Kwasniewski MT. Generating Novel Aroma Phenotypes Using Commercial Wine Samples to Characterize an F1 Population. FRONTIERS IN PLANT SCIENCE 2022; 13:894492. [PMID: 35800611 PMCID: PMC9253817 DOI: 10.3389/fpls.2022.894492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Due to their disease tolerance and cold hardy nature, interspecific hybrid grapes are widely grown in the Midwestern and Northeastern United States, with additional interest worldwide in the face of increased abiotic and biotic stresses from climate change. However, the aroma profile of these hybrids is unique and generally less popular in comparison with Vitis vinifera grapes. One of the challenges in any phenotyping project is first defining the traits of interest. As wine quality was our ultimate metric of interest, the aroma profile of commercial wines produced from the parents of a breeding population (Vitis aestivalis derived 'Norton' x V. vinifera. 'Cabernet Sauvignon') was first assessed for traits of interest. We investigated 11 commercial wines each of Norton, a popular hybrid in Missouri and Cabernet Sauvignon (Cab) for their volatile profiles using the more inclusive metabolomics-based workflow. We then analyzed 21 Norton and 21 Cab grapes from different sites and vintages for the free and bound volatile compounds using HS-SPME-GCMS to validate the differences in wine. The GCMS data was processed using XCMS software to find features that were different between the two cultivars. The two cultivars were found to have differences in their volatile profiles, with 304 features different for wine volatiles, 418 features different for free volatiles, and 302 features different for bound volatiles at 0.05 significance level and with at least a 1.5-fold change between the two cultivars. Those features were used to identify several odor-active compounds in both grapes and wines, including β-damascenone, β-ionone, eugenol, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), and methyl salicylate. Some of the identified compounds were higher in Norton than Cab; however, several features were higher in Cab. Using the identified aroma compounds as markers, we phenotyped an F1 population of Norton and Cab. The F1 population was found to be segregating for many aroma compounds with some genotypes demonstrating an even higher concentration of aroma volatiles than either of the parents. Ultimately, using commercially available samples paired with untargeted analysis proved to be an efficient way to determine phenotypes of interest for further analysis and may offer an easy way to choose potential parents with desired traits for breeding.
Collapse
Affiliation(s)
- Mani Awale
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
- Grape and Wine Institute, University of Missouri, Columbia, MO, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Connie Liu
- Grape and Wine Institute, University of Missouri, Columbia, MO, United States
| | - Misha T. Kwasniewski
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
- Grape and Wine Institute, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Tran T, Roullier-Gall C, Verdier F, Martin A, Schmitt-Kopplin P, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Microbial Interactions in Kombucha through the Lens of Metabolomics. Metabolites 2022; 12:235. [PMID: 35323678 PMCID: PMC8954749 DOI: 10.3390/metabo12030235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Kombucha is a fermented beverage obtained through the activity of a complex microbial community of yeasts and bacteria. Exo-metabolomes of kombucha microorganisms were analyzed using FT-ICR-MS to investigate their interactions. A simplified set of microorganisms including two yeasts (Brettanomyces bruxellensis and Hanseniaspora valbyensis) and one acetic acid bacterium (Acetobacter indonesiensis) was used to investigate yeast-yeast and yeast-acetic acid bacterium interactions. A yeast-yeast interaction was characterized by the release and consumption of fatty acids and peptides, possibly in relationship to commensalism. A yeast-acetic acid bacterium interaction was different depending on yeast species. With B. bruxellensis, fatty acids and peptides were mainly produced along with consumption of sucrose, fatty acids and polysaccharides. In opposition, the presence of H. valbyensis induced mainly the decrease of polyphenols, peptides, fatty acids, phenolic acids and putative isopropyl malate and phenylpyruvate and few formulae have been produced. With all three microorganisms, the formulae involved with the yeast-yeast interactions were consumed or not produced in the presence of A. indonesiensis. The impact of the yeasts' presence on A. indonesiensis was consistent regardless of the yeast species with a commensal consumption of compounds associated to the acetic acid bacterium by yeasts. In detail, hydroxystearate from yeasts and dehydroquinate from A. indonesiensis were potentially consumed in all cases of yeast(s)-acetic acid bacterium pairing, highlighting mutualistic behavior.
Collapse
Affiliation(s)
- Thierry Tran
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | | | - Antoine Martin
- Biomère, 14 rue Audubon, 75120 Paris, France; (F.V.); (A.M.)
| | - Philippe Schmitt-Kopplin
- Comprehensive Foodomics Platform, Technische Universität München, 85354 Freising, Germany;
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | - Cosette Grandvalet
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (C.R.-G.); (H.A.); (C.G.); (R.T.-M.)
| |
Collapse
|
8
|
Non-Targeted Metabolomic Analysis of the Kombucha Production Process. Metabolites 2022; 12:metabo12020160. [PMID: 35208234 PMCID: PMC8878552 DOI: 10.3390/metabo12020160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Kombucha is a traditional fermented beverage obtained from the transformation of sugared black tea by a community of yeasts and bacteria. Kombucha production recently became industrialized, but its quality standards remain poorly defined. Metabolomic analyses were applied using FT-ICR-MS to characterize the impacts of production phases and the type of tea on the non-volatile chemical composition of kombucha. Independently from tea type, the first phase of acidification in open vessel was characterized by the release of gluconate and gallate from acetic acid bacteria metabolism and probably from polymeric polyphenols, respectively. The second phase of carbonation in closed vessel induced a consumption or transformation of oleic acid that could be consecutive of oxygen limitation. The first phase had the most impact on molecular diversity, but tea type mainly influenced the global composition in polyphenol profile. Black tea polyphenols were more impacted by microbial activity compared to green tea polyphenols.
Collapse
|
9
|
Roullier-Gall C, Bordet F, David V, Schmitt-Kopplin P, Alexandre H. Yeast interaction on Chardonnay wine composition: Impact of strain and inoculation time. Food Chem 2021; 374:131732. [PMID: 34875436 DOI: 10.1016/j.foodchem.2021.131732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/04/2022]
Abstract
It is of great importance to understand the molecular characteristics and substantial chemical transformations due to yeast-yeast interaction. Non-targeted metabolomics was used to unravel must in fermentation composition, inoculated with non-Saccharomyces (NS) yeasts and Saccharomyces cerevisiae (S) for sequential fermentation. ultrahigh-resolution mass spectrometry was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms. Among the modifications observed, metabolomic unravels deep changes in nitrogen metabolism due to yeast-yeast interactions and suggests that the redistribution pattern affects two different routes, the pentose phosphate and the amino acid synthesis pathways.
Collapse
Affiliation(s)
- C Roullier-Gall
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France.
| | - F Bordet
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - V David
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - P Schmitt-Kopplin
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - H Alexandre
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| |
Collapse
|
10
|
Bordet F, Roullier-Gall C, Ballester J, Vichi S, Quintanilla-Casas B, Gougeon RD, Julien-Ortiz A, Kopplin PS, Alexandre H. Different Wines from Different Yeasts? " Saccharomyces cerevisiae Intraspecies Differentiation by Metabolomic Signature and Sensory Patterns in Wine". Microorganisms 2021; 9:microorganisms9112327. [PMID: 34835452 PMCID: PMC8620830 DOI: 10.3390/microorganisms9112327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Alcoholic fermentation is known to be a key stage in the winemaking process that directly impacts the composition and quality of the final product. Twelve wines were obtained from fermentations of Chardonnay must made with twelve different commercial wine yeast strains of Saccharomyces cerevisiae. In our study, FT-ICR-MS, GC-MS, and sensory analysis were combined with multivariate analysis. Ultra-high-resolution mass spectrometry (uHRMS) was able to highlight hundreds of metabolites specific to each strain from the same species, although they are characterized by the same technological performances. Furthermore, the significant involvement of nitrogen metabolism in this differentiation was considered. The modulation of primary metabolism was also noted at the volatilome and sensory levels. Sensory analysis allowed us to classify wines into three groups based on descriptors associated with white wine. Thirty-five of the volatile compounds analyzed, including esters, medium-chain fatty acids, superior alcohols, and terpenes discriminate and give details about differences between wines. Therefore, phenotypic differences within the same species revealed metabolic differences that resulted in the diversity of the volatile fraction that participates in the palette of the sensory pattern. This original combination of metabolomics with the volatilome and sensory approaches provides an integrative vision of the characteristics of a given strain. Metabolomics shine the new light on intraspecific discrimination in the Saccharomyces cerevisiae species.
Collapse
Affiliation(s)
- Fanny Bordet
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
- Lallemand SAS, 19 Rue des Briquetiers, CEDEX, 31700 Blagnac, France;
- Correspondence:
| | - Chloé Roullier-Gall
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
| | - Jordi Ballester
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Stefania Vichi
- Food Science and Gastronomy Department, University of Barcelona, Nutrition, INSA (Institut de Recerca en Nutricio I Seguretat Alimentaria), 08921 Santa Coloma de Gramenet, Spain; (S.V.); (B.Q.-C.)
| | - Beatriz Quintanilla-Casas
- Food Science and Gastronomy Department, University of Barcelona, Nutrition, INSA (Institut de Recerca en Nutricio I Seguretat Alimentaria), 08921 Santa Coloma de Gramenet, Spain; (S.V.); (B.Q.-C.)
| | - Régis D. Gougeon
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Anne Julien-Ortiz
- Lallemand SAS, 19 Rue des Briquetiers, CEDEX, 31700 Blagnac, France;
| | - Philippe Schmitt Kopplin
- German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764 Neuherberg, Germany;
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
| |
Collapse
|
11
|
Awale M, Liu C, Kwasniewski MT. Workflow to Investigate Subtle Differences in Wine Volatile Metabolome Induced by Different Root Systems and Irrigation Regimes. Molecules 2021; 26:molecules26196010. [PMID: 34641553 PMCID: PMC8512433 DOI: 10.3390/molecules26196010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
To allow for a broad survey of subtle metabolic shifts in wine caused by rootstock and irrigation, an integrated metabolomics-based workflow followed by quantitation was developed. This workflow was particularly useful when applied to a poorly studied red grape variety cv. Chambourcin. Allowing volatile metabolites that otherwise may have been missed with a targeted analysis to be included, this approach allowed deeper modeling of treatment differences which then could be used to identify important compounds. Wines produced on a per vine basis, over two years, were analyzed using SPME-GC-MS/MS. From the 382 and 221 features that differed significantly among rootstocks in 2017 and 2018, respectively, we tentatively identified 94 compounds by library search and retention index, with 22 confirmed and quantified using authentic standards. Own-rooted Chambourcin differed from other root systems for multiple volatile compounds with fewer differences among grafted vines. For example, the average concentration of β-Damascenone present in own-rooted vines (9.49 µg/L) was significantly lower in other rootstocks (8.59 µg/L), whereas mean Linalool was significantly higher in 1103P rootstock compared to own-rooted. β-Damascenone was higher in regulated deficit irrigation (RDI) than other treatments. The approach outlined not only was shown to be useful for scientific investigation, but also in creating a protocol for analysis that would ensure differences of interest to the industry are not missed.
Collapse
Affiliation(s)
- Mani Awale
- Division of Plant Sciences, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
- Department of Food Sciences, The Pennsylvania State University, 326 Rodney A. Erickson Food Science Building, University Park, PA 16802, USA
| | - Connie Liu
- Food Science Department, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
| | - Misha T. Kwasniewski
- Division of Plant Sciences, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
- Department of Food Sciences, The Pennsylvania State University, 326 Rodney A. Erickson Food Science Building, University Park, PA 16802, USA
- Food Science Department, University of Missouri-Columbia, 135 Eckles Hall, Columbia, MO 65211, USA;
- Correspondence: ; Tel.: +1-814-865-6842
| |
Collapse
|
12
|
|
13
|
Maia M, Figueiredo A, Cordeiro C, Sousa Silva M. FT-ICR-MS-based metabolomics: A deep dive into plant metabolism. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34545595 DOI: 10.1002/mas.21731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics involves the identification and quantification of metabolites to unravel the chemical footprints behind cellular regulatory processes and to decipher metabolic networks, opening new insights to understand the correlation between genes and metabolites. In plants, it is estimated the existence of hundreds of thousands of metabolites and the majority is still unknown. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a powerful analytical technique to tackle such challenges. The resolving power and sensitivity of this ultrahigh mass accuracy mass analyzer is such that a complex mixture, such as plant extracts, can be analyzed and thousands of metabolite signals can be detected simultaneously and distinguished based on the naturally abundant elemental isotopes. In this review, FT-ICR-MS-based plant metabolomics studies are described, emphasizing FT-ICR-MS increasing applications in plant science through targeted and untargeted approaches, allowing for a better understanding of plant development, responses to biotic and abiotic stresses, and the discovery of new natural nutraceutical compounds. Improved metabolite extraction protocols compatible with FT-ICR-MS, metabolite analysis methods and metabolite identification platforms are also explored as well as new in silico approaches. Most recent advances in MS imaging are also discussed.
Collapse
Affiliation(s)
- Marisa Maia
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Figueiredo
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Cordeiro
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Sousa Silva
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Development of a Wine Metabolomics Approach for the Authenticity Assessment of Selected Greek Red Wines. Molecules 2021; 26:molecules26102837. [PMID: 34064666 PMCID: PMC8150368 DOI: 10.3390/molecules26102837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022] Open
Abstract
Wine metabolomics constitutes a powerful discipline towards wine authenticity assessment through the simultaneous exploration of multiple classes of compounds in the wine matrix. Over the last decades, wines from autochthonous Greek grape varieties have become increasingly popular among wine connoisseurs, attracting great interest for their authentication and chemical characterization. In this work, 46 red wine samples from Agiorgitiko and Xinomavro grape varieties were collected from wineries in two important winemaking regions of Greece during two consecutive vintages and analyzed using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS). A targeted metabolomics methodology was developed, including the determination and quantification of 28 phenolic compounds from different classes (hydroxycinnamic acids, hydroxybenzoic acids, stilbenes and flavonoids). Moreover, 86 compounds were detected and tentatively identified via a robust suspect screening workflow using an in-house database of 420 wine related compounds. Supervised chemometric techniques were employed to build an accurate and robust model to discriminate between two varieties.
Collapse
|
15
|
Maia M, Ferreira AE, Cunha J, Eiras-Dias J, Cordeiro C, Figueiredo A, Silva MS. Comparison of the chemical diversity of Vitis rotundifolia and Vitis vinifera cv. ‘Cabernet Sauvignon’. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2021. [DOI: 10.1051/ctv/20213601001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Grapevine is one of the most important fruit plants in the world, mainly due to its grapes and related products, with a highly economic and cultural importance. Every year, vineyards are affected by several pathogen outbreaks and the only way to control them is through preventive applications of agrochemicals every 12 to 15 days. This approach is not sustainable and not always effective. The Vitis genus comprise different species that exhibit varying levels of resistance to pathogens, thus the understanding of the innate resistance/susceptibility mechanisms of these different Vitis species is crucial to cope with these threats. In this work, an untargeted metabolomics approach was followed, using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS), to analyse the metabolic chemical diversity of two Vitis species: Vitis rotundifolia (resistant to pathogens) and V. vinifera cv. ‘Cabernet Sauvignon’ (susceptible to pathogens). Chemical formulas from both Vitis were used to build Van Krevelen diagrams and compositional space plots, which do not require full metabolite identification and provide an easy comparison method. Based only on these visualization tools, it was shown that the V. rotundifolia metabolome is more complex than the metabolome of V. vinifera cv. ‘Cabernet Sauvignon’. Moreover, the regions that present a higher density are associated to lipids, polyketides and carbohydrates. Also, V. rotundifolia metabolome presented a higher ratio O/C compounds.
Collapse
|
16
|
Yang K, Somogyi A, Thomas C, Zhang H, Cheng Z, Xu S, Miller C, Spivey D, Blake C, Smith C, Dafoe D, Danielson ND, Crowder MW. Analysis of Barrel-Aged Kentucky Bourbon Whiskey by Ultrahigh Resolution Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Reeves SG, Somogyi A, Zeller WE, Ramelot TA, Wrighton KC, Hagerman AE. Proanthocyanidin Structural Details Revealed by Ultrahigh Resolution FT-ICR MALDI-Mass Spectrometry, 1H- 13C HSQC NMR, and Thiolysis-HPLC-DAD. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14038-14048. [PMID: 33170695 DOI: 10.1021/acs.jafc.0c04877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proanthocyanidins (condensed tannins) are important in food chemistry, agriculture, and health, driving demand for improvements in structure determination. We used ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) methods to determine the exact composition of individual species in heterogeneous mixtures of proanthocyanidin polymers from Sorghum bicolor grain and Neptunia lutea leaves. Fragmentation patterns obtained with FT-ICR ESI MS-MS (electrospray ionization) confirmed structural details from thiolysis-high-performance liquid chromatography (HPLC)-diode array detection (DAD) and 1H-13C heteronuclear single quantum coherence (HSQC) NMR. We found that A-type linkages were characteristic of shorter polymers in predominantly B-linked proanthocyanidin. We suggest that supramolecular complex formation between proanthocyanidins and matrix components such as 2,5-dihydroxybenzoic acid was responsible for anomalous 152 dalton peaks, incorrectly assigned as 3-O-galloylation, when using FT-ICR matrix-assisted laser desorption ionization (MALDI-MS). Our data illustrate the power of the ultrahigh resolution FT-ICR methods but include the caveat that MALDI-MS must be paired with complementary analytical tools to avoid artifacts.
Collapse
Affiliation(s)
- Savanah G Reeves
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Arpad Somogyi
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne E Zeller
- ARS-USDA, U.S. Dairy Forage Research Center, Madison, Wisconsin 53706, United States
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kelly C Wrighton
- Soil & Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ann E Hagerman
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
18
|
Maccelli A, Cesa S, Cairone F, Secci D, Menghini L, Chiavarino B, Fornarini S, Crestoni ME, Locatelli M. Metabolic profiling of different wild and cultivated Allium species based on high-resolution mass spectrometry, high-performance liquid chromatography-photodiode array detector, and color analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4525. [PMID: 32368854 DOI: 10.1002/jms.4525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Many plants of the genus Allium are widely cultivated and consumed for their nutraceutical and health-enhancing bioactive components effective in many metabolic and infectious diseases. In particular, Allium sativum L. (garlic), the most economically important Allium species, is known to present volatile, comparatively polar sulfur-containing compounds responsible for both the typical garlic aroma and antimicrobial property. More recently, the (moderately) polar portion of garlic metabolome, rich of polyphenols and amino acids, is gaining increasing interest as a source of antioxidants and primary nutrients. In this study, we have explored the chemical diversity of eight different hydroalcoholic extracts obtained by microwave-assisted extraction of white and red crop A. sativum and wild Allium triquetrum, Allium roseum, and Allium ampeloprasum, all originating from the Mediterranean Basin. The aim is to appraise their potential dietetic and healing value through an in-depth chemical characterization and contribute to preserve and exploit natural resources. The multimethodological method applied here is based on an untargeted metabolic profiling by means of high-resolution electrospray ionization Fourier-transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry. More than 850 by ESI(+) and 450 by ESI(-) putative metabolites have been annotated covering all main classes of primary and secondary metabolites, including amino acids, alkaloids, organic and fatty acids, nucleotides, vitamins, organosulfur compounds, and flavonoids. The pigment and polyphenol components have been separated and quantified by a targeted chromatographic high-performance liquid chromatography-photodiode array detector (HPLC-PDA) and CIEL*a*b* colorimetric assay, showing characteristic yellow and red components in each extract, related to a different milieu of anthocyanins and flavonoids as assigned by high-resolution mass spectrometry (MS).
Collapse
Affiliation(s)
- Alessandro Maccelli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Cairone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Luigi Menghini
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Marcello Locatelli
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
19
|
Cao-Ngoc P, Leclercq L, Rossi JC, Hertzog J, Tixier AS, Chemat F, Nasreddine R, Al Hamoui Dit Banni G, Nehmé R, Schmitt-Kopplin P, Cottet H. Water-Based Extraction of Bioactive Principles from Blackcurrant Leaves and Chrysanthellum americanum: A Comparative Study. Foods 2020; 9:E1478. [PMID: 33081198 PMCID: PMC7602794 DOI: 10.3390/foods9101478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
The water-based extraction of bioactive components from flavonoid-rich medicinal plants is a key step that should be better investigated. This is especially true when dealing with easy-to-use home-made conditions of extractions, which are known to be a bottleneck in the course for a better control and optimization of the daily uptake of active components from medicinal plants. In this work, the water-based extraction of Blackcurrant (Ribes nigrum) leaves (BC) and Chrysanthellum americanum (CA), known to have complementary pharmacological properties, was studied and compared with a previous work performed on the extraction of Hawthorn (Crataegus, HAW). Various extraction modes in water (infusion, percolation, maceration, ultrasounds, microwaves) were compared for the extraction of bioactive principles contained in BC and CA in terms of extraction yield, of amount of flavonoids, phenolic compounds, and proanthocyanidin oligomers, and of UHPLC profiles of the extracted compounds. The qualitative and quantitative aspects of the extraction, in addition to the kinetic of extraction, were studied. The optimized easy-to-use-at-home extraction protocol developed for HAW was found very efficient to easily extract bioactive components from BC and CA plants. UHPLC-ESI-MS and high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were also implemented to get more qualitative information on the specific and common chemical compositions of the three plants (including HAW). Their antihyaluronidase, antioxidant, and antihypertensive activities were also determined and compared, demonstrating similar activities as the reference compound for some of these plants.
Collapse
Affiliation(s)
- Phu Cao-Ngoc
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| | - Jean-Christophe Rossi
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| | - Jasmine Hertzog
- Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany; (J.H.); (P.S.-K.)
- Analytical Food Chemistry, Technische Universität Muenchen, 85354 Freising, Germany
| | - Anne-Sylvie Tixier
- GREEN Extraction Team, INRA, University of Avignon, 84916 Avignon, France; (A.-S.T.); (F.C.)
| | - Farid Chemat
- GREEN Extraction Team, INRA, University of Avignon, 84916 Avignon, France; (A.-S.T.); (F.C.)
| | - Rouba Nasreddine
- Institute of Organic and Analytical Chemistry (ICOA), CNRS, University of Orléans, 45067 Orléans, France; (R.N.); (G.A.H.D.B.); (R.N.)
| | - Ghassan Al Hamoui Dit Banni
- Institute of Organic and Analytical Chemistry (ICOA), CNRS, University of Orléans, 45067 Orléans, France; (R.N.); (G.A.H.D.B.); (R.N.)
| | - Reine Nehmé
- Institute of Organic and Analytical Chemistry (ICOA), CNRS, University of Orléans, 45067 Orléans, France; (R.N.); (G.A.H.D.B.); (R.N.)
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany; (J.H.); (P.S.-K.)
- Analytical Food Chemistry, Technische Universität Muenchen, 85354 Freising, Germany
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| |
Collapse
|
20
|
Cuadros-Inostroza Á, Verdugo-Alegría C, Willmitzer L, Moreno-Simunovic Y, Vallarino JG. Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones. Metabolites 2020; 10:metabo10060220. [PMID: 32481759 PMCID: PMC7344679 DOI: 10.3390/metabo10060220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Grapes, one of the oldest agricultural crops, are cultivated to produce table fruits, dried fruits, juice, and wine. Grapevine variety is composed of clones that share common morphological traits. However, they can differ in minor genetic mutations which often result in not only notorious morphological changes but also in other non-visible sensorial distinctive attributes. In the present work, we identified three Vitis vinifera cv. Pinot noir clones grown under identical field conditions that showed different grape cluster types. Here, sensorial analysis together with non-targeted metabolite profiles by Ultra High performance Liquid Chromatography (UPLC) couples to Ultra High Resolution Mass Spectrometry (FT-ICR-MS) of wines elaborated from the three different grape cluster types was studied with the aim of (i) finding sensorial differences among these three types of wines, and, if there were, (ii) determining the molecular features (metabolites) associated with these sensorial attributes by a multivariate statistical approach.
Collapse
Affiliation(s)
| | - Claudio Verdugo-Alegría
- Centro Tecnológico de la Vid y el Vino, Universidad de Talca, Av. Lircay s/n, 3460000 Talca, Maule, Chile;
| | - Lothar Willmitzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| | - Yerko Moreno-Simunovic
- Centro Tecnológico de la Vid y el Vino, Universidad de Talca, Av. Lircay s/n, 3460000 Talca, Maule, Chile;
- Correspondence: (Y.M.-S.); (J.G.V.)
| | - José G. Vallarino
- Centro Tecnológico de la Vid y el Vino, Universidad de Talca, Av. Lircay s/n, 3460000 Talca, Maule, Chile;
- Correspondence: (Y.M.-S.); (J.G.V.)
| |
Collapse
|
21
|
Longo R, Carew A, Sawyer S, Kemp B, Kerslake F. A review on the aroma composition of Vitis vinifera L. Pinot noir wines: origins and influencing factors. Crit Rev Food Sci Nutr 2020; 61:1589-1604. [PMID: 32401040 DOI: 10.1080/10408398.2020.1762535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Vitis vinifera L. Pinot noir still wines are some of the most popular and expensive red wines in the world. Several research articles are reported in literature concerning the impacts of viticultural and enological practices, and vineyard location, on Pinot noir still wine aroma. This review summarizes the previous and latest literature pertaining to volatile compounds including esters, higher alcohols and C13-norisoprenoids, and their effect on Pinot noir wine perceived aroma. Their origin and behavior are discussed, as well as their role in regional differentiation. The first part of this review paper presents an overview of volatile compounds that are usually found in Pinot noir still wines at concentrations higher than their odor detection threshold. The second part deals with studies pertaining to human inputs that impact on Pinot noir wine aroma profile such as viticulture and winemaking interventions. The role of the vineyard site is also revised. This review concludes by considering what further opportunities are available to researchers in this field for greater control over Pinot noir wine quality outcomes.
Collapse
Affiliation(s)
- Rocco Longo
- Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, Australia
| | - Anna Carew
- Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, Australia
| | - Samantha Sawyer
- Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, Australia
| | - Belinda Kemp
- Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, Ontario, Canada
| | - Fiona Kerslake
- Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, Australia
| |
Collapse
|
22
|
Abstract
As a complex microbial ecosystem, wine is a particularly interesting model for studying interactions between microorganisms as fermentation can be done by microbial consortia, a unique strain or mixed culture. The effect of a specific yeast strain on its environments is unique and characterized by its metabolites and their concentration. With its great resolution and excellent mass accuracy, ultrahigh resolution mass spectrometry (uHRMS) is the perfect tool to analyze the yeast metabolome at the end of alcoholic fermentation. This work reports the change in wine chemical composition from pure and mixed culture fermentation with Lachancea thermotolerans, Starmerella bacillaris, Metschnikowia pulcherrima and S. cerevisiae. We could clearly differentiate wines according to the yeast strain used in single cultures and markers, which reflect important differences between the yeast species, were extracted and annotated. Moreover, uHRMS revealed underlining intra species metabolomics differences, showing differences at the strain level between the two Starmerella bacillaris. Non volatile metabolomics analysis of single and sequential fermentations confirmed that mixed fermentations lead to a different composition. Distinct metabolites appeared in wines from sequential fermentation compared to single fermentation. This suggests that interactions between yeasts are not neutral.
Collapse
|
23
|
Gotthardt M, Kanawati B, Schmidt F, Asam S, Hammerl R, Frank O, Hofmann T, Schmitt‐Kopplin P, Rychlik M. Comprehensive Analysis of the
Alternaria
Mycobolome Using Mass Spectrometry Based Metabolomics. Mol Nutr Food Res 2020; 64:e1900558. [DOI: 10.1002/mnfr.201900558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Marina Gotthardt
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Basem Kanawati
- HelmholtzZentrum München Ingolstädter Landstraβe 1 85764 Neuherberg Germany
| | - Frank Schmidt
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Stefan Asam
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular SensoryTechnical University of Munich Lise‐Meitner‐Straβe 34 85354 Freising Germany
| | - Philippe Schmitt‐Kopplin
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
- HelmholtzZentrum München Ingolstädter Landstraβe 1 85764 Neuherberg Germany
| | - Michael Rychlik
- Chair of Analytical Food ChemistryTechnical University of Munich Maximus‐von‐Imhof Forum 2 85354 Freising Germany
| |
Collapse
|
24
|
Optimizing Water-Based Extraction of Bioactive Principles of Hawthorn: From Experimental Laboratory Research to Homemade Preparations. Molecules 2019; 24:molecules24234420. [PMID: 31816956 PMCID: PMC6930565 DOI: 10.3390/molecules24234420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hawthorn (Crataegus) is used for its cardiotonic, hypotensive, vasodilative, sedative, antiatherosclerotic, and antihyperlipidemic properties. One of the main goals of this work was to find a well-defined optimized extraction protocol usable by each of us that would lead to repeatable, controlled, and quantified daily uptake of active components from hawthorn at a drinkable temperature (below 60 °C). A thorough investigation of the extraction mode in water (infusion, maceration, percolation, ultrasounds, microwaves) on the yield of extraction and the amount of phenolic compounds, flavonoids, and proanthocyanidin oligomers as well as on the Ultra High Performance Liquid Chromatography (UHPLC) profiles of the extracted compounds was carried out. High-resolution Fourier transform ion cyclotron resonance mass spectrometry was also implemented to discriminate the different samples and conditions of extraction. The quantitative and qualitative aspects of the extraction as well as the kinetics of extraction were studied, not only according to the part (flowers or leaves), the state (fresh or dried), and the granulometry of the dry plant, but also the stirring speed, the temperature, the extraction time, the volume of the container (cup, mug or bowl) and the use of infusion bags.
Collapse
|
25
|
Kune C, McCann A, Raphaël LR, Arias AA, Tiquet M, Van Kruining D, Martinez PM, Ongena M, Eppe G, Quinton L, Far J, De Pauw E. Rapid Visualization of Chemically Related Compounds Using Kendrick Mass Defect As a Filter in Mass Spectrometry Imaging. Anal Chem 2019; 91:13112-13118. [DOI: 10.1021/acs.analchem.9b03333] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Andréa McCann
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - La Rocca Raphaël
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Anthony Arguelles Arias
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liege, Gembloux, Belgium
| | - Mathieu Tiquet
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Daan Van Kruining
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marc Ongena
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liege, Gembloux, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Bahut F, Liu Y, Romanet R, Coelho C, Sieczkowski N, Alexandre H, Schmitt-Kopplin P, Nikolantonaki M, Gougeon RD. Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study. Food Res Int 2019; 123:762-770. [DOI: 10.1016/j.foodres.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
27
|
Abstract
The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation. By combining sensory evaluation, chemical and metabolomics analyses of the wine, and investigating oxygen transfer through the bottleneck/stopper, this work elucidates the importance of the glass/cork interface. It shows unambiguously that the transfer of oxygen at the interface between the cork stopper and the glass bottleneck must be considered a potentially significant contributor to oxidation state during the bottle aging, leading to a notable modification of a wine’s chemical signature.
Collapse
|
28
|
Petitgonnet C, Klein GL, Roullier-Gall C, Schmitt-Kopplin P, Quintanilla-Casas B, Vichi S, Julien-David D, Alexandre H. Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Food Microbiol 2019; 83:122-133. [PMID: 31202403 DOI: 10.1016/j.fm.2019.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 01/28/2023]
Abstract
Sequential fermentation of grape must inoculated with L. thermotolerans and then S. cerevisiae 24 h later (typical wine-making practice) was conducted with or without cell-cell contact between the two yeast species. We monitored cell viability of the two species throughout fermentation by flow cytometry. The cell viability of S. cerevisiae decreased under both conditions, but the decrease was greater if there was cell-cell contact. An investigation of the nature of the interactions showed competition between the two species for nitrogen compounds, oxygen, and must sterols. Volatile-compound analysis showed differences between sequential and pure fermentation and that cell-cell contact modifies yeast metabolism, as the volatile-compound profile was significantly different from that of sequential fermentation without cell-cell contact. We further confirmed that cell-cell contact modifies yeast metabolism by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show specific metabolite production and quantitative metabolite changes associated with each fermentation condition. This study shows that cell-cell contact not only affects cell viability, as already reported, but markedly affects yeast metabolism.
Collapse
Affiliation(s)
- Clément Petitgonnet
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Géraldine L Klein
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany; Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354, Freising, Germany
| | - Beatriz Quintanilla-Casas
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Diane Julien-David
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, Institut Universitaire de la Vigne et du Vin, rue Claude LADREY, BP 27877, 21000, DIJON, France.
| |
Collapse
|
29
|
Macaluso V, Scuderi D, Crestoni ME, Fornarini S, Corinti D, Dalloz E, Martinez-Nunez E, Hase WL, Spezia R. l-Cysteine Modified by S-Sulfation: Consequence on Fragmentation Processes Elucidated by Tandem Mass Spectrometry and Chemical Dynamics Simulations. J Phys Chem A 2019; 123:3685-3696. [DOI: 10.1021/acs.jpca.9b01779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Veronica Macaluso
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Évry, France
| | - Debora Scuderi
- LCP, Laboratoire de Chimie Physique, Université Paris-Sud, Bat. 349, CNRS UMR8000, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Enzo Dalloz
- LCP, Laboratoire de Chimie Physique, Université Paris-Sud, Bat. 349, CNRS UMR8000, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Emilio Martinez-Nunez
- Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Riccardo Spezia
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Évry, France
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, 4, Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
30
|
Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry. Anal Chim Acta 2019; 1052:179-189. [DOI: 10.1016/j.aca.2018.11.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
|
31
|
Echavarri-Bravo V, Tinzl M, Kew W, Cruickshank F, Logan Mackay C, Clarke DJ, Horsfall LE. High resolution fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterisation of enzymatic processing of commercial lignin. N Biotechnol 2019; 52:1-8. [PMID: 30922999 DOI: 10.1016/j.nbt.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Lignin and lignin components of woody biomass have been identified as an attractive alternative to fossil fuels. However, the complex composition of this plant polymer is one of the drawbacks that limits its exploitation. Biocatalysis of lignin to produce platform chemicals has been receiving great attention as it presents a sustainable approach for lignin valorisation. Aligned with this area of research, in the present study we have applied ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to identify the preferred lignin substrates of a ligninolytic enzyme, a laccase produced by the terrestrial fungus Trametes versicolor. A commercial lignin was incubated with the laccase and acetosyringone (a laccase mediator) for up to 168 h and direct infusion electrospray FT-ICR MS enabled the identification of thousands of molecular species present in the complex lignin sample at different incubation time points. Significant changes in the chemical composition of lignin were detected upon laccase treatment, which resulted in a decrease in the molecular mass distribution of assigned species, consistent with laccase lytic activity. This reduction was predominantly in species classified as lignin-like (based on elemental ratios) and polymeric in nature (>400 Da). Of particular note was a fall in the number of species assigned containing sulfur. Changes in the chemical composition/structure of the lignin polymer were supported by FT-IR spectroscopy. We propose the use of FT-ICR MS as a rapid and efficient technique to support the biotechnological valorisation of lignin as well as the development and optimization of laccase-mediator systems for treating complex mixtures.
Collapse
Affiliation(s)
- Virginia Echavarri-Bravo
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Matthias Tinzl
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Will Kew
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Faye Cruickshank
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Logan Mackay
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - David J Clarke
- EaStChem, School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Louise E Horsfall
- School of Biological Sciences, Roger Land Building, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
32
|
Roullier-Gall C, Kanawati B, Hemmler D, Druschel GK, Gougeon RD, Schmitt-Kopplin P. Electrochemical triggering of the Chardonnay wine metabolome. Food Chem 2019; 286:64-70. [PMID: 30827658 DOI: 10.1016/j.foodchem.2019.01.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Oxidation of wine upon bottle ageing is a crucial matter of concern for the qualitative long-term storage of white wines. However, understanding the various molecular mechanisms potentially involved, which can impact the wine composition, requires that top-down analytical strategies are implemented. Here, we report the analysis of bottle aged Chardonnay wines made from the same must, but differing by the amount of SO2 initially added to the must at pressing (0 and 8 g·h L-1). Metabolomics fingerprints obtained from electrochemical simulation of oxidative reactions were obtained by coupling of either on-line or off-line electrochemical oxidation to FT-ICR-MS detection. We reveal that, whatever the electrochemical DC voltage is, wines with initial SO2 addition displayed molecular fingerprints, which remained more similar to the non-oxidized wine without initial SO2 addition. We further show that a diversity of sulfur-containing compounds appeared to be the most sensitive to oxidation, whereas nitrogen-containing compounds were mostly formed.
Collapse
Affiliation(s)
- Chloé Roullier-Gall
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Daniel Hemmler
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gregory K Druschel
- Department of Earth Sciences, Indiana University - Purdue University Indianapolis, IN 46202, United States
| | - Régis D Gougeon
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Philippe Schmitt-Kopplin
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
33
|
Leefmann T, Frickenhaus S, Koch BP. UltraMassExplorer: a browser-based application for the evaluation of high-resolution mass spectrometric data. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:193-202. [PMID: 30366355 DOI: 10.1002/rcm.8315] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/16/2023]
Abstract
RATIONALE High-resolution mass spectrometry (HRMS) with high sample throughput has become an important analytical tool for the analysis of highly complex samples and data processing has become a major challenge for the user community. Evaluating direct-infusion HRMS data without automated tools for batch processing can be a time-consuming step in the analytical pipeline. Therefore, we developed a new browser-based software tool for processing HRMS data. METHODS The software, named UltraMassExplorer (UME), was written in the R programming language using the shiny library to build the graphical user interface. The performance of the integrated formula library search algorithm was tested using HRMS data derived from analyses of up to 50 extracts of marine dissolved organic matter. RESULTS The software supports the processing of lists of calibrated masses of neutral, protonated or deprotonated molecules, with masses of up to 700 Da and a mass accuracy <3 ppm. In the performance test, the number of assigned peaks per second increased with the number of submitted peaks and reached a maximum rate of 4745 assigned peaks per second. CONCLUSIONS UME offers a complete data evaluation pipeline comprising a fast molecular formula assignment algorithm allowing for the swift reanalysis of complete datasets, advanced filter functions and the export of data, metadata and publication-quality graphics. Unique to UME is a fast and interactive connection between data and their visual representation. UME provides a new platform enabling an increased transparency, customization, documentation and comparability of datasets.
Collapse
Affiliation(s)
- Tim Leefmann
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Stephan Frickenhaus
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- University of Applied Sciences, An der Karlstadt 8, 27568, Bremerhaven, Germany
- Centre for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, 28359, Bremen, Germany
| | - Boris P Koch
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- University of Applied Sciences, An der Karlstadt 8, 27568, Bremerhaven, Germany
| |
Collapse
|
34
|
Diamantidou D, Zotou A, Theodoridis G. Wine and grape marc spirits metabolomics. Metabolomics 2018; 14:159. [PMID: 30830493 DOI: 10.1007/s11306-018-1458-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mass spectrometry (MS)-based and nuclear magnetic resonance (NMR) spectroscopic analyses play a key role in the field of metabolomics due to their important advantages. The use of metabolomics in wine and grape marc spirits allows a more holistic perspective in monitoring and gaining information on the making processes and thus it can assist on the improvement of their quality. OBJECTIVES This review surveys the latest metabolomics approaches for wine and grape marc spirits with a focus on the description of MS-based and NMR spectroscopic analytical techniques. METHODS We reviewed the literature to identify metabolomic studies of wine and grape marc spirits that were published until the end of 2017, with the key term combinations of 'metabolomics', 'wine' and 'grape marc spirits'. Through the reference lists from these studies, additional articles were identified. RESULTS The results of this review showed that the application of different metabolomics approaches has significantly increased the knowledge of wine metabolome and grape marc spirits; however there is not yet a single analytical platform that can completely separate, detect and identify all metabolites in one analysis. CONCLUSIONS The authentication and quality control of wines and grape marc spirits has to be taken with caution, since the product's chemical composition could be affected by many factors. Despite intrinsic limitations, NMR spectroscopy and MS based strategies remain the key analytical methods in metabolomics studies. Authenticity, traceability and health issues related to their consumption are the major research initiatives in wine and grape marc spirits metabolomics analysis.
Collapse
Affiliation(s)
- Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia Zotou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
35
|
Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted Approaches. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040092] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical analysis of grape juice and wine has been performed for over 50 years in a targeted manner to determine a limited number of compounds using Gas Chromatography, Mass-Spectrometry (GC-MS) and High Pressure Liquid Chromatography (HPLC). Therefore, it only allowed the determination of metabolites that are present in high concentration, including major sugars, amino acids and some important carboxylic acids. Thus, the roles of many significant but less concentrated metabolites during wine making process are still not known. This is where metabolomics shows its enormous potential, mainly because of its capability in analyzing over 1000 metabolites in a single run due to the recent advancements of high resolution and sensitive analytical instruments. Metabolomics has predominantly been adopted by many wine scientists as a hypothesis-generating tool in an unbiased and non-targeted way to address various issues, including characterization of geographical origin (terroir) and wine yeast metabolic traits, determination of biomarkers for aroma compounds, and the monitoring of growth developments of grape vines and grapes. The aim of this review is to explore the published literature that made use of both targeted and untargeted metabolomics to study grapes and wines and also the fermentation process. In addition, insights are also provided into many other possible avenues where metabolomics shows tremendous potential as a question-driven approach in grape and wine research.
Collapse
|
36
|
Narduzzi L, Stanstrup J, Mattivi F, Franceschi P. The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2145-2157. [DOI: 10.1080/19440049.2018.1523572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Luca Narduzzi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Jan Stanstrup
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Fulvio Mattivi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
- Centre for Agriculture, Food and the Environment, University of Trento, San Michele all’Adige, Italy
| | - Pietro Franceschi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| |
Collapse
|
37
|
Karasinski J, Elguera JCT, Ibarra AAG, Wrobel K, Bulska E, Wrobel K. Comparative Evaluation of Red Wine from Various European Regions Using Mass Spectrometry Tools. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1442472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jakub Karasinski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | | | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, Guanajuato, Mexico
| | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Katarzyna Wrobel
- Department of Chemistry, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
38
|
Rocchetti G, Gatti M, Bavaresco L, Lucini L. Untargeted metabolomics to investigate the phenolic composition of Chardonnay wines from different origins. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Billet K, Houillé B, Dugé de Bernonville T, Besseau S, Oudin A, Courdavault V, Delanoue G, Guérin L, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. FRONTIERS IN PLANT SCIENCE 2018; 9:798. [PMID: 29977248 PMCID: PMC6021511 DOI: 10.3389/fpls.2018.00798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/24/2018] [Indexed: 05/21/2023]
Abstract
Grape accumulates numerous polyphenols with abundant health benefit and organoleptic properties that in planta act as key components of the plant defense system against diseases. Considerable advances have been made in the chemical characterization of wine metabolites particularly volatile and polyphenolic compounds. However, the metabotyping (metabolite-phenotype characterization) of grape varieties, from polyphenolic-rich vineyard by-product is unprecedented. As this composition might result from the complex interaction between genotype, environment and viticultural practices, a field experiment was setting up with uniform pedo-climatic factors and viticultural practices of growing vines to favor the genetic determinism of polyphenol expression. As a result, UPLC-MS-based targeted metabolomic analyses of grape stems from 8 Vitis vinifera L. cultivars allowed the determination of 42 polyphenols related to phenolic acids, flavonoids, procyanidins, and stilbenoids as resveratrol oligomers (degree of oligomerization 1-4). Using a partial least-square discriminant analysis approach, grape stem chemical profiles were discriminated according to their genotypic origin showing that polyphenol profile express a varietal signature. Furthermore, hierarchical clustering highlights various degree of polyphenol similarity between grape varieties that were in agreement with the genetic distance using clustering analyses of 22 microsatellite DNA markers. Metabolite correlation network suggested that several polyphenol subclasses were differently controlled. The present polyphenol metabotyping approach coupled to multivariate statistical analyses might assist grape selection programs to improve metabolites with both health-benefit potential and plant defense traits.
Collapse
Affiliation(s)
- Kévin Billet
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Benjamin Houillé
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Thomas Dugé de Bernonville
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | | | | | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, Université de Tours, Faculté des Sciences Pharmaceutiques, Tours, France
| |
Collapse
|
40
|
Nikolantonaki M, Julien P, Coelho C, Roullier-Gall C, Ballester J, Schmitt-Kopplin P, Gougeon RD. Impact of Glutathione on Wines Oxidative Stability: A Combined Sensory and Metabolomic Study. Front Chem 2018; 6:182. [PMID: 29938203 PMCID: PMC6002495 DOI: 10.3389/fchem.2018.00182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
This paper is a comprehensive study regarding the role of glutathione as a natural antioxidant on white wines aging potential. It includes sensory and ultrahigh resolution mass spectrometry (FTICR-MS) metabolomics of aged chardonnay wines from 2008 to 2009 vintages, made after glutathione spiking at alcoholic fermentation or bottling. The closure effect was also considered. The sensory analysis revealed a clear vintage, closure and glutathione effect on wines oxidative character after several years of bottle aging. Spearman rank correlation was applied to link the sensory analysis and the exact mass information from FT-ICR-MS. FTICR-MS along with multivariate statistical analyses put in evidence that glutathione efficiency against wines sensory oxidative stability is related to wines antioxidant metabolome consisting of N- and S- containing compounds like amino acids, aromatic compounds and peptides. The chemical composition and origin of wines antioxidant metabolome suggests that its management since the very beginning of the vinification process is a key factor to estimate wines aging potential.
Collapse
Affiliation(s)
- Maria Nikolantonaki
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| | - Perrine Julien
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 Centre National de la Recherche Scientifique, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Christian Coelho
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| | - Chloé Roullier-Gall
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France.,Research Unit Analytical Bio Geo Chemistry, Helmholtz Zentrum Muenchen, Neuherberg, Germany.,Technische Universität München, Analytical Food Chemistry, Freising, Germany
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 Centre National de la Recherche Scientifique, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Bio Geo Chemistry, Helmholtz Zentrum Muenchen, Neuherberg, Germany.,Technische Universität München, Analytical Food Chemistry, Freising, Germany
| | - Régis D Gougeon
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| |
Collapse
|
41
|
Roullier-Gall C, Signoret J, Hemmler D, Witting MA, Kanawati B, Schäfer B, Gougeon RD, Schmitt-Kopplin P. Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky. Front Chem 2018. [PMID: 29520358 PMCID: PMC5827162 DOI: 10.3389/fchem.2018.00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Whisky can be described as a complex matrix integrating the chemical history from the fermented cereals, the wooden barrels, the specific distillery processes, aging, and environmental factors. In this study, using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we analyzed 150 whisky samples from 49 different distilleries, 7 countries, and ranging from 1 day new make spirit to 43 years of maturation with different types of barrel. Chemometrics revealed the unexpected impact of the wood history on the distillate's composition during barrel aging, regardless of the whisky origin. Flavonols, oligolignols, and fatty acids are examples of important chemical signatures for Bourbon casks, whereas a high number of polyphenol glycosides, including for instance quercetin-glucuronide or myricetin-glucoside as potential candidates, and carbohydrates would discriminate Sherry casks. However, the comparison of barrel aged rums and whiskies revealed specific signatures, highlighting the importance of the initial composition of the distillate and the distillery processes.
Collapse
Affiliation(s)
- Chloé Roullier-Gall
- Comprehensive Foodomics Platform, Technische Universität München, Freising, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julie Signoret
- Comprehensive Foodomics Platform, Technische Universität München, Freising, Germany
| | - Daniel Hemmler
- Comprehensive Foodomics Platform, Technische Universität München, Freising, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael A Witting
- Comprehensive Foodomics Platform, Technische Universität München, Freising, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Régis D Gougeon
- UMR PAM Université de Bourgogne, AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Dijon, France
| | - Philippe Schmitt-Kopplin
- Comprehensive Foodomics Platform, Technische Universität München, Freising, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
42
|
Sulfites and the wine metabolome. Food Chem 2017; 237:106-113. [DOI: 10.1016/j.foodchem.2017.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/27/2017] [Accepted: 05/07/2017] [Indexed: 11/17/2022]
|
43
|
Rychlik M, Kanawati B, Schmitt-Kopplin P. Foodomics as a promising tool to investigate the mycobolome. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Roullier-Gall C, Heinzmann SS, Garcia JP, Schmitt-Kopplin P, Gougeon RD. Chemical messages from an ancient buried bottle: metabolomics for wine archeochemistry. NPJ Sci Food 2017; 1:1. [PMID: 31304243 PMCID: PMC6548415 DOI: 10.1038/s41538-017-0001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 11/09/2022] Open
Abstract
Restoration works in the old Clunisian Saint-Vivant monastery in Burgundy revealed an unidentified wine bottle (SV1) dating between 1772 and 1860. Chemical evidence for SV1 origin and nature are presented here using non-targeted Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Nuclear Magnetic Resonance analyses. The SV1 chemical diversity was compared to red wines (Pinot Noir) from the Romanée Saint Vivant appellation and from six different vintages spanning from 1915 to 2009. The close metabolomic signature between SV1 and Romanée Saint Vivant wines spoke in favor of a filiation between these wines, in particular considering the Pinot noir grape variety. A further statistical comparison with up to 77 Pinot noir wines from Burgundy and vintages from nearly all the 20th century, confirmed that SV1 must have been made more than one hundred years ago. The increasing number of detected high masses and of nitrogen containing compounds with the ageing of the wine was in accordance with known ageing mechanisms. Besides, resveratrol was shown here to be preserved for more than one hundred years in wine. For the first time, the age of an old unknown wine along with its grape variety have been assessed through non-targeted metabolomic analyses. For the first time, non-targeted metabolomics analyses were employed to assess the age of an unlabeled old wine together with its grape variety. Roullier-Gall at the Technische Universitat Munchen and coworkers from both Germany and France identified the metabolomics of unknown wine SV1 using high resolution FT-ICR Mass Spectrometry in combination with NMR. By comparing the metabolic signature of SV1 with the reference wines, it was found the SV1 wine was more than 100 years old and its grape variety was close to the Pinot Noir from the Romanée Saint Vivant appellation. Moreover, this was the first time that resveratrol was observed in wines of more than one hundred years. This archeochemical method can serve as an alternative approach to the commonly used genetic-based techniques on the wine authentication.
Collapse
Affiliation(s)
- Chloé Roullier-Gall
- 1Technische Universitat Munchen, Chair of Analytical Food Chemistry, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany.,2German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstadter Landstrasse. 1, 85764 Neuherberg, Germany
| | - Silke S Heinzmann
- 2German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstadter Landstrasse. 1, 85764 Neuherberg, Germany
| | - Jean-Pierre Garcia
- 3UMR 6298 ARTEHIS, Université de Bourgogne/CNRS/culture, Université de Bourgogne, 6 bd Gabriel, 21000 Dijon, France
| | - Philippe Schmitt-Kopplin
- 1Technische Universitat Munchen, Chair of Analytical Food Chemistry, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany.,2German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstadter Landstrasse. 1, 85764 Neuherberg, Germany
| | - Régis D Gougeon
- UMR A 02.102 PAM Université de Bourgogne/Agrosup Dijon, Equipe PCAV, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877 Dijon Cedex, France
| |
Collapse
|
45
|
Kew W, Goodall I, Clarke D, Uhrín D. Chemical Diversity and Complexity of Scotch Whisky as Revealed by High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:200-213. [PMID: 27752914 PMCID: PMC5174148 DOI: 10.1007/s13361-016-1513-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 05/25/2023]
Abstract
Scotch Whisky is an important product, both culturally and economically. Chemically, Scotch Whisky is a complex mixture, which comprises thousands of compounds, the nature of which are largely unknown. Here, we present a thorough overview of the chemistry of Scotch Whisky as observed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Eighty-five whiskies, representing the majority of Scotch Whisky produced and sold, were analyzed by untargeted high-resolution mass spectrometry. Thousands of chemical formulae were assigned for each sample based on parts-per-billion mass accuracy of FT-ICR MS spectra. For the first time, isotopic fine structure analysis was used to confirm the assignment of high molecular weight CHOS species in Scotch Whisky. The assigned spectra were compared using a number of visualization techniques, including van Krevelen diagrams, double bond equivalence (DBE) plots, as well as heteroatomic compound class distributions. Additionally, multivariate analysis, including PCA and OPLS-DA, was used to interpret the data, with key compounds identified for discriminating between types of whisky (blend or malt) or maturation wood type. FT-ICR MS analysis of Scotch Whisky was shown to be of significant potential in further understanding of the complexity of mature spirit drinks and as a tool for investigating the chemistry of the maturation processes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Will Kew
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FJ, UK
| | - Ian Goodall
- The Scotch Whisky Research Institute, The Robertson Trust Building, Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK
| | - David Clarke
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FJ, UK.
| | - Dušan Uhrín
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
46
|
Adrian M, Lucio M, Roullier-Gall C, Héloir MC, Trouvelot S, Daire X, Kanawati B, Lemaître-Guillier C, Poinssot B, Gougeon R, Schmitt-Kopplin P. Metabolic Fingerprint of PS3-Induced Resistance of Grapevine Leaves against Plasmopara viticola Revealed Differences in Elicitor-Triggered Defenses. FRONTIERS IN PLANT SCIENCE 2017; 8:101. [PMID: 28261225 PMCID: PMC5306141 DOI: 10.3389/fpls.2017.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/18/2017] [Indexed: 05/05/2023]
Abstract
Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare the specific metabolic fingerprint induced by each elicitor and to characterize the associated metabolic pathways. Moreover, erythritol phosphate was identified as a putative marker of elicitor-IR.
Collapse
Affiliation(s)
- Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
- *Correspondence: Marielle Adrian,
| | - Marianna Lucio
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Chloé Roullier-Gall
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Xavier Daire
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Basem Kanawati
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | | | - Benoît Poinssot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Régis Gougeon
- UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules GuyotDijon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität MünchenFreising-Weihenstephan, Germany
| |
Collapse
|
47
|
Habchi B, Alves S, Paris A, Rutledge DN, Rathahao-Paris E. How to really perform high throughput metabolomic analyses efficiently? Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Roullier-Gall C, Witting M, Moritz F, Gil RB, Goffette D, Valade M, Schmitt-Kopplin P, Gougeon RD. Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis. Food Chem 2016; 203:207-215. [DOI: 10.1016/j.foodchem.2016.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 12/23/2022]
|
49
|
Millán L, Sampedro MC, Sánchez A, Delporte C, Van Antwerpen P, Goicolea MA, Barrio RJ. Liquid chromatography-quadrupole time of flight tandem mass spectrometry-based targeted metabolomic study for varietal discrimination of grapes according to plant sterols content. J Chromatogr A 2016; 1454:67-77. [PMID: 27268521 DOI: 10.1016/j.chroma.2016.05.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 01/07/2023]
Abstract
Grapevine and derived products are rich in a wide range of compounds and its quality mainly depends on its metabolites, as a result of viticulture practices. Plant sterols, also called phytosterols (PS), are secondary metabolites regarded as bioactive substance present in grape berries and other plant-based food. The present study deals with a metabolomic approach focusing on phytosterols family in six varieties of Rioja grapes (Cabernet Sauvignon, Tempranillo, Graciano, Garnacha, White Garnacha and Viura), in order to find significant differences among them. Liquid chromatography- mass spectrometry with a quadrupole-time of flight mass analyzer (LC-QTOF) was used to find as many metabolites as possible in the different grape berry fractions, and using statistics to help finding significant clustering of the metabolic profile of pulp, peel and seeds in relation to the variety. The best chromatographic and detection conditions were achieved by gas phase ionization via atmospheric pressure chemical ionization (APCI) in positive mode. Furthermore, analysis with electrospray (ESI) is also needed for phytosterol derivatives confirmation. Putative compounds of interest in the analyzed samples were found by an automated compound extraction algorithm (Molecular Feature Extraction, MFE) and an initial differential expression from the data was created with the aid of commercial software. Once the data were collected, the results were filtered, aligned and normalized, and evaluating applying one-way analysis of variance (ANOVA) with a 95% significance level. For sample class prediction, partial least square-discriminant analysis (PLS-DA) is used as a supervised pattern recognition method and excellent separation among the grape varieties is shown. An overall accuracy of 93.3% (pulp samples), 100.0% (peel) or 96.7% (seeds) in discriminating between grape varieties was achieved when comparing the different fractions. In general, 7 PS derivatives were identified with ID scores higher than 84%.
Collapse
Affiliation(s)
- Laura Millán
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - M Carmen Sampedro
- Central Service of Analysis of Alava, SGIker, University of the Basque Country, UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - Alicia Sánchez
- Central Service of Analysis of Alava, SGIker, University of the Basque Country, UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - Cédric Delporte
- Laboratory of Pharmaceutical Chemistry & Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry & Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium, Belgium
| | - M Aranzazu Goicolea
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - Ramón J Barrio
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, E-01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
50
|
Cozzolino D. Metabolomics in Grape and Wine: Definition, Current Status and Future Prospects. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0502-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|