1
|
Meier S, Bautzmann R, Komarova NY, Ernst V, Suter Grotemeyer M, Schröder K, Haindrich AC, Vega Fernández A, Robert CAM, Ward JM, Rentsch D. Stress-regulated Arabidopsis GAT2 is a low affinity γ-aminobutyric acid transporter. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6295-6311. [PMID: 39058302 DOI: 10.1093/jxb/erae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
The four-carbon non-proteinogenic amino acid γ-aminobutyric acid (GABA) accumulates to high levels in plants in response to various abiotic and biotic stress stimuli, and plays a role in C:N balance, signaling, and as a transport regulator. Expression in Xenopus oocytes and voltage-clamping allowed the characterization of Arabidopsis GAT2 (At5g41800) as a low affinity GABA transporter with a K0.5GABA ~8 mM. l-Alanine and butylamine represented additional substrates. GABA-induced currents were strongly dependent on the membrane potential, reaching the highest affinity and highest transport rates at strongly negative membrane potentials. Mutation of Ser17, previously reported to be phosphorylated in planta, did not result in altered affinity. In a short-term stress experiment, AtGAT2 mRNA levels were up-regulated at low water potential and under osmotic stress (polyethylene glycol and mannitol). Furthermore, AtGAT2 promoter activity was detected in vascular tissues, maturating pollen, and the phloem unloading region of young seeds. Even though this suggested a role for AtGAT2 in long-distance transport and loading of sink organs, under the conditions tested neither AtGAT2-overexpressing plants, atgat2 or atgat1 T-DNA insertion lines, nor atgat1 atgat2 doubleknockout mutants differed from wild-type plants in growth on GABA, amino acid levels, or resistance to salt and osmotic stress.
Collapse
Affiliation(s)
- Stefan Meier
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Robin Bautzmann
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Nataliya Y Komarova
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Viona Ernst
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Marianne Suter Grotemeyer
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Kirsten Schröder
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Alexander C Haindrich
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Adriana Vega Fernández
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Christelle A M Robert
- Institute of Plant Sciences, Chemical Ecology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - John M Ward
- Plant and Microbial Biology, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, MN 55108-1095, USA
| | - Doris Rentsch
- Institute of Plant Sciences, Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
2
|
Vanthienen W, Fernández-García J, Baietti MF, Claeys E, Van Leemputte F, Nguyen L, Goossens V, Deparis Q, Broekaert D, Vlayen S, Audenaert D, Delforge M, D'Amuri A, Van Zeebroeck G, Leucci E, Fendt SM, Thevelein JM. The novel family of Warbicin ® compounds inhibits glucose uptake both in yeast and human cells and restrains cancer cell proliferation. Front Oncol 2024; 14:1411983. [PMID: 39239276 PMCID: PMC11374660 DOI: 10.3389/fonc.2024.1411983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Many cancer cells share with yeast a preference for fermentation over respiration, which is associated with overactive glucose uptake and breakdown, a phenomenon called the Warburg effect in cancer cells. The yeast tps1Δ mutant shows even more pronounced hyperactive glucose uptake and phosphorylation causing glycolysis to stall at GAPDH, initiation of apoptosis through overactivation of Ras and absence of growth on glucose. The goal of the present work was to use the yeast tps1Δ strain to screen for novel compounds that would preferentially inhibit overactive glucose influx into glycolysis, while maintaining basal glucose catabolism. This is based on the assumption that the overactive glucose catabolism of the tps1Δ strain might have a similar molecular cause as the Warburg effect in cancer cells. We have isolated Warbicin ® A as a compound restoring growth on glucose of the yeast tps1Δ mutant, showed that it inhibits the proliferation of cancer cells and isolated structural analogs by screening directly for cancer cell inhibition. The Warbicin ® compounds are the first drugs that inhibit glucose uptake by both yeast Hxt and mammalian GLUT carriers. Specific concentrations did not evoke any major toxicity in mice but increase the amount of adipose tissue likely due to reduced systemic glucose uptake. Surprisingly, Warbicin ® A inhibition of yeast sugar uptake depends on sugar phosphorylation, suggesting transport-associated phosphorylation as a target. In vivo and in vitro evidence confirms physical interaction between yeast Hxt7 and hexokinase. We suggest that reversible transport-associated phosphorylation by hexokinase controls the rate of glucose uptake through hydrolysis of the inhibitory ATP molecule in the cytosolic domain of glucose carriers and that in yeast tps1Δ cells and cancer cells reversibility is compromised, causing constitutively hyperactive glucose uptake and phosphorylation. Based on their chemical structure and properties, we suggest that Warbicin ® compounds replace the inhibitory ATP molecule in the cytosolic domain of the glucose carriers, preventing hexokinase to cause hyperactive glucose uptake and catabolism.
Collapse
Affiliation(s)
- Ward Vanthienen
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Juan Fernández-García
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Maria Francesca Baietti
- TRACE PDX Platform, Laboratory of RNA Cancer Biology, LKI Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Elisa Claeys
- TRACE PDX Platform, Laboratory of RNA Cancer Biology, LKI Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Frederik Van Leemputte
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Long Nguyen
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Quinten Deparis
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Dorien Broekaert
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sophie Vlayen
- LKI Leuven Cancer Institute Leuven, KU Leuven, Leuven, Belgium
| | - Dominique Audenaert
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Michel Delforge
- LKI Leuven Cancer Institute Leuven, KU Leuven, Leuven, Belgium
| | | | - Griet Van Zeebroeck
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Eleonora Leucci
- TRACE PDX Platform, Laboratory of RNA Cancer Biology, LKI Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Johan M Thevelein
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- NovelYeast bv, Bio-Incubator, BIO4, Leuven-Heverlee, Belgium
| |
Collapse
|
3
|
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol 2024; 100:17-27. [PMID: 38494080 DOI: 10.1016/j.semcancer.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Dhiraj Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India; Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Akansha Dagar
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India.
| |
Collapse
|
4
|
Wu Z, Chen S, Chen Z, Dong G, Xu D, Sheng C. Design of Evodiamine-Glucose Conjugates with Improved In Vivo Antitumor Activity. J Med Chem 2024. [PMID: 38646851 DOI: 10.1021/acs.jmedchem.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Natural product evodiamine is a multitargeting antitumor lead compound. However, clinical development of evodiamine derivatives was hampered by poor water solubility and limited in vivo antitumor potency. Herein, a series of evodiamine-glucose conjugates were designed by additional targeting glucose transporter-1 (GLUT1). Compared with the lead compound, conjugate 8 exhibited obvious enhancement in water solubility and in vivo antitumor efficacy. Furthermore, the effect of GLUT1 targeting also led to lower cytotoxicity to normal cells. Antitumor mechanism studies manifested that conjugate 8 acted by Top1/Top2 dual inhibition, apoptosis induction, and G2/M cell cycle arrest, which selectively targeted tumor cells with a high expression level of GLUT1. Thus, evodiamine-glucose conjugates showed promising features as potential antitumor agents.
Collapse
Affiliation(s)
- Zhe Wu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Shuqiang Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| | - Zhipeng Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| | - Defeng Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| |
Collapse
|
5
|
Song KS, Nimse SB, Kim J, Warkad SD, Kim T. ID-Checker Technology for the Highly Selective Macroscale Delivery of Anticancer Agents to the Cancer Cells. J Med Chem 2022; 65:12883-12894. [PMID: 36194724 PMCID: PMC9575670 DOI: 10.1021/acs.jmedchem.2c00646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Cancer cells deploy several glucose transport protein (GLUT) channels on the cell membranes to increase glucose uptake. Cancer cells die within 24 h in the absence of glucose. Thus, preventing the deployment of GLUT channels can deprive them of glucose, resulting in apoptosis within 24 h. Herein, we developed the ID-Checker with a glucose tag that ensures its highly specific macroscale delivery of anticancer agents to the cancer cells through the GLUT channels. ID-Checker presented here showed IC50 values of 0.17-0.27 and 3.34 μM in cancer and normal cell lines, respectively. ID-Checker showed a selectivity index of 12.5-20.2, which is about 10-20 times higher than that of known anticancer agents such as colchicine. ID-Checker inhibits the microtubule formation, which results in the prevention of the deployment of GLUT channels in 6 h and kills the cancer cells within 24 h without any damage to normal cells.
Collapse
Affiliation(s)
- Keum-soo Song
- Biometrix
Technology, Inc., 2-2
Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Satish Balasaheb Nimse
- Institute
of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Junghoon Kim
- Biometrix
Technology, Inc., 2-2
Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | | | - Taisun Kim
- Institute
of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| |
Collapse
|
6
|
Jiang X, Yan N, Deng D, Yan C. Structural aspects of the glucose and monocarboxylate transporters involved in the Warburg effect. IUBMB Life 2022; 74:1180-1199. [PMID: 36082803 DOI: 10.1002/iub.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081206. [PMID: 36013385 PMCID: PMC9410066 DOI: 10.3390/life12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
Collapse
|
8
|
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems. Sci Rep 2022; 12:1429. [PMID: 35082341 PMCID: PMC8791944 DOI: 10.1038/s41598-022-05383-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
Collapse
|
9
|
Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci Rep 2021; 11:13751. [PMID: 34215797 PMCID: PMC8253845 DOI: 10.1038/s41598-021-93063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.
Collapse
|
10
|
Schmidl S, Tamayo Rojas SA, Iancu CV, Choe JY, Oreb M. Functional Expression of the Human Glucose Transporters GLUT2 and GLUT3 in Yeast Offers Novel Screening Systems for GLUT-Targeting Drugs. Front Mol Biosci 2021; 7:598419. [PMID: 33681287 PMCID: PMC7930720 DOI: 10.3389/fmolb.2020.598419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023] Open
Abstract
Human GLUT2 and GLUT3, members of the GLUT/SLC2 gene family, facilitate glucose transport in specific tissues. Their malfunction or misregulation is associated with serious diseases, including diabetes, metabolic syndrome, and cancer. Despite being promising drug targets, GLUTs have only a few specific inhibitors. To identify and characterize potential GLUT2 and GLUT3 ligands, we developed a whole-cell system based on a yeast strain deficient in hexose uptake, whose growth defect on glucose can be rescued by the functional expression of human transporters. The simplicity of handling yeast cells makes this platform convenient for screening potential GLUT2 and GLUT3 inhibitors in a growth-based manner, amenable to high-throughput approaches. Moreover, our expression system is less laborious for detailed kinetic characterization of inhibitors than alternative methods such as the preparation of proteoliposomes or uptake assays in Xenopus oocytes. We show that functional expression of GLUT2 in yeast requires the deletion of the extended extracellular loop connecting transmembrane domains TM1 and TM2, which appears to negatively affect the trafficking of the transporter in the heterologous expression system. Furthermore, single amino acid substitutions at specific positions of the transporter sequence appear to positively affect the functionality of both GLUT2 and GLUT3 in yeast. We show that these variants are sensitive to known inhibitors phloretin and quercetin, demonstrating the potential of our expression systems to significantly accelerate the discovery of compounds that modulate the hexose transport activity of GLUT2 and GLUT3.
Collapse
Affiliation(s)
- Sina Schmidl
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian A Tamayo Rojas
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cristina V Iancu
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Schmidl S, Iancu CV, Reifenrath M, Choe JY, Oreb M. A label-free real-time method for measuring glucose uptake kinetics in yeast. FEMS Yeast Res 2020; 21:6041724. [PMID: 33338229 DOI: 10.1093/femsyr/foaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023] Open
Abstract
Glucose uptake assays commonly rely on the isotope-labeled sugar, which is associated with radioactive waste and exposure of the experimenter to radiation. Here, we show that the rapid decrease of the cytosolic pH after a glucose pulse to starved Saccharomyces cerevisiae cells is dependent on the rate of sugar uptake and can be used to determine the kinetic parameters of sugar transporters. The pH-sensitive green fluorescent protein variant pHluorin is employed as a genetically encoded biosensor to measure the rate of acidification as a proxy of transport velocity in real time. The measurements are performed in the hexose transporter-deficient (hxt0) strain EBY.VW4000 that has been previously used to characterize a plethora of sugar transporters from various organisms. Therefore, this method provides an isotope-free, fluorometric approach for kinetic characterization of hexose transporters in a well-established yeast expression system.
Collapse
Affiliation(s)
- Sina Schmidl
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Cristina V Iancu
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC27834, USA
| | - Mara Reifenrath
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC27834, USA
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Tilekar K, Upadhyay N, Iancu CV, Pokrovsky V, Choe JY, Ramaa CS. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188457. [PMID: 33096154 PMCID: PMC7704680 DOI: 10.1016/j.bbcan.2020.188457] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Cancer research of the Warburg effect, a hallmark metabolic alteration in tumors, focused attention on glucose metabolism whose targeting uncovered several agents with promising anticancer effects at the preclinical level. These agents' monotherapy points to their potential as adjuvant combination therapy to existing standard chemotherapy in human trials. Accordingly, several studies on combining glucose transporter (GLUT) inhibitors with chemotherapeutic agents, such as doxorubicin, paclitaxel, and cytarabine, showed synergistic or additive anticancer effects, reduced chemo-, radio-, and immuno-resistance, and reduced toxicity due to lowering the therapeutic doses required for desired chemotherapeutic effects, as compared with monotherapy. The combinations have been specifically effective in treating cancer glycolytic phenotypes, such as pancreatic and breast cancers. Even combining GLUT inhibitors with other glycolytic inhibitors and energy restriction mimetics seems worthwhile. Though combination clinical trials are in the early phase, initial results are intriguing. The various types of GLUTs, their role in cancer progression, GLUT inhibitors, and their anticancer mechanism of action have been reviewed several times. However, utilizing GLUT inhibitors as combination therapeutics has received little attention. We consider GLUT inhibitors agents that directly affect glucose transporters by binding to them or indirectly alter glucose transport by changing the transporters' expression level. This review mainly focuses on summarizing the effects of various combinations of GLUT inhibitors with other anticancer agents and providing a perspective on the current status.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Cristina V. Iancu
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Vadim Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Jun-yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| |
Collapse
|
13
|
Gheyouche E, Launay R, Lethiec J, Labeeuw A, Roze C, Amossé A, Téletchéa S. DockNmine, a Web Portal to Assemble and Analyse Virtual and Experimental Interaction Data. Int J Mol Sci 2019; 20:E5062. [PMID: 31614716 PMCID: PMC6829441 DOI: 10.3390/ijms20205062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Scientists have to perform multiple experiments producing qualitative and quantitative data to determine if a compound is able to bind to a given target. Due to the large diversity of the potential ligand chemical space, the possibility of experimentally exploring a lot of compounds on a target rapidly becomes out of reach. Scientists therefore need to use virtual screening methods to determine the putative binding mode of ligands on a protein and then post-process the raw docking experiments with a dedicated scoring function in relation with experimental data. Two of the major difficulties for comparing docking predictions with experiments mostly come from the lack of transferability of experimental data and the lack of standardisation in molecule names. Although large portals like PubChem or ChEMBL are available for general purpose, there is no service allowing a formal expert annotation of both experimental data and docking studies. To address these issues, researchers build their own collection of data in flat files, often in spreadsheets, with limited possibilities of extensive annotations or standardisation of ligand descriptions allowing cross-database retrieval. We have conceived the dockNmine platform to provide a service allowing an expert and authenticated annotation of ligands and targets. First, this portal allows a scientist to incorporate controlled information in the database using reference identifiers for the protein (Uniprot ID) and the ligand (SMILES description), the data and the publication associated to it. Second, it allows the incorporation of docking experiments using forms that automatically parse useful parameters and results. Last, the web interface provides a lot of pre-computed outputs to assess the degree of correlations between docking experiments and experimental data.
Collapse
Affiliation(s)
- Ennys Gheyouche
- UFIP, Université de Nantes, UMR CNRS 6286, 2 rue de la Houssinière, 44322 Nantes, France.
| | - Romain Launay
- UFIP, Université de Nantes, UMR CNRS 6286, 2 rue de la Houssinière, 44322 Nantes, France.
| | - Jean Lethiec
- UFIP, Université de Nantes, UMR CNRS 6286, 2 rue de la Houssinière, 44322 Nantes, France.
| | - Antoine Labeeuw
- UFIP, Université de Nantes, UMR CNRS 6286, 2 rue de la Houssinière, 44322 Nantes, France.
| | - Caroline Roze
- UFIP, Université de Nantes, UMR CNRS 6286, 2 rue de la Houssinière, 44322 Nantes, France.
| | - Alan Amossé
- UFIP, Université de Nantes, UMR CNRS 6286, 2 rue de la Houssinière, 44322 Nantes, France.
| | - Stéphane Téletchéa
- UFIP, Université de Nantes, UMR CNRS 6286, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
14
|
Fasting blood glucose levels in patients with different types of diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:277-292. [PMID: 30905457 DOI: 10.1016/bs.pmbts.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Normal human physiology is dependent on a tight control of the fasting blood glucose (FBG) levels. The islets of pancreas maintains FBG levels within a narrow range of 4-6mmol/L by secreting various hormones, especially insulin and glucagon. However, the hormone secretions by the islets of pancreas are governed by a collective effort among pancreas-islet axis, brain-islet axis, liver-islet axis, gut-islet axis, and adipocyte/myocyte-islet axis. Furthermore, the damage of pancreas, vascular system, brain, liver, intestine, adipose, muscle, and other organs and tissues might affect FBG levels through insulin resistance or impaired insulin signaling, which is the hallmark of type 2 diabetes. In this study, 320,572 clinical lab test results of FBG levels from healthy individuals and patients with 64 different types of diseases during the past 5 years in our hospital were retrieved and analyzed. Based on the mean (SD), median, and p (-Log10p) values, we found 57/64 diseases including type 2 diabetes, pancreatitis, diabetic nephropathy, and pancreatic cancer had significantly (p<0.05, -Log10p>1.30) increased whereas 6/64 diseases including preeclampsia, Wilms' tumor, and lupus erythematous had significantly decreased FBG levels compared to that of healthy controls. These data indicated that the increased FBG levels might be a general pathophysiological property of diseased tissues or organs and the increased FBG levels might be a consequence but not the cause for either prediabetes or type 2 diabetes.
Collapse
|