1
|
Periyasamy S, Farissi S, Rayaroth MP, Kannan M, Nambi IM, Liu D. Electrochemical oxidation of Florfenicol in aqueous solution with mixed metal oxide electrode: Operational factors, reaction by-products and toxicity evaluation. CHEMOSPHERE 2024; 362:142665. [PMID: 38906192 DOI: 10.1016/j.chemosphere.2024.142665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Veterinary antibiotics have become an emerging pollutant in water and wastewater sources due to excess usage, toxicity and resistance to traditional water and wastewater treatment. The present study explored the degradation of a model antibiotic- Florfenicol (FF) using electrochemical oxidation (EO) with Ti-RuO2/IrO2 anode. The anode material was characterized using SEM-EDS studies expressing stable structure and optimal interaction of the neighboring metal oxides with each other. The EDS results showed the presence of Ru, Ir, Ti, O and C elements with 6.44%, 2.57%, 9.61%, 52.74% and 28.64% atomic weight percentages, respectively. Optimization studies revealed pH 5, 30 mA cm-2 current density and 0.05 M Na2SO4 for 5 mg L-1 FF achieved 90% TOC removal within 360 min treatment time. The degradation followed pseudo-first order kinetics. LC-Q-TOF-MS studies revealed six predominant byproducts illustrating hydroxylation, deflourination, and dechlorination to be the major degradation mechanisms during the electrochemical oxidation of FF. Ion chromatography studies revealed an increase in Cl-, F- and NO3- ions as treatment time progressed with Cl- decreasing after the initial phase of the treatment. Toxicity studies using Zebrafish (Danio rerio) embryo showed the treated sample to be toxic inducing developmental disorders such as pericardial edema, yolk sac edema, spinal curvature and tail malformation at 96 h post fertilization (hpf). Compared to control, delayed hatching and coagulation were observed in treated embryos. Overall, this study sets the stage for understanding the effect of mixed metal oxide (MMO) anodes on the degradation of veterinary antibiotic-polluted water and wastewater sources using electrochemical oxidation.
Collapse
Affiliation(s)
- Selvendiran Periyasamy
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Salman Farissi
- Department of Environmental Science, Central University of Kerala, Kasaragod, Kerala, India
| | - Manoj P Rayaroth
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam-530045, India
| | - Maharajan Kannan
- Department of Zoology, University of Allahabad, Prayagraj-211002, India
| | - Indumathi M Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Nair N, Gandhi V, Shukla A, Ghotekar S, Nguyen VH, Varma K. Mechanisms in the photocatalytic breakdown of persistent pharmaceutical and pesticide molecules over TiO 2-based photocatalysts: A review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:413003. [PMID: 38968934 DOI: 10.1088/1361-648x/ad5fd6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Titanium dioxide (TiO2) based photocatalysts have been widely used as a photocatalyst for the degradation of various persistent organic compounds in water and air. The degradation mechanism involves the generation of highly reactive oxygen species, such as hydroxyl radicals, which react with organic compounds to break down their chemical bonds and ultimately mineralize them into harmless products. In the case of pharmaceutical and pesticide molecules, TiO2and modified TiO2photocatalysis effectively degrade a wide range of compounds, including antibiotics, pesticides, and herbicides. The main downside is the production of dangerous intermediate products, which are not frequently addressed in the literature that is currently available. The degradation rate of these compounds by TiO2photocatalysis depends on factors such as the chemical structure of the compounds, the concentration of the TiO2catalyst, the intensity, the light source, and the presence of other organic or inorganic species in the solution. The comprehension of the degradation mechanism is explored to gain insights into the intermediates. Additionally, the utilization of response surface methodology is addressed, offering a potential avenue for enhancing the scalability of the reactors. Overall, TiO2photocatalysis is a promising technology for the treatment of pharmaceutical and agrochemical wastewater, but further research is needed to optimize the process conditions and to understand the fate and toxicity of the degradation products.
Collapse
Affiliation(s)
- Niraj Nair
- Department of Chemical Engineering, Dharmsinh Desai University, College Road, Nadiad 387 001 Gujarat, India
| | - Vimal Gandhi
- Department of Chemical Engineering, Dharmsinh Desai University, College Road, Nadiad 387 001 Gujarat, India
| | - Atindra Shukla
- Department of Chemical Engineering, Dharmsinh Desai University, College Road, Nadiad 387 001 Gujarat, India
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103 Tamil Nadu, India
| | - Van-Huy Nguyen
- Department of Environmental Engineering & Innovation and Development Centre of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Kiran Varma
- Department of Petrochemical & Chemical Engineering, Institute of Technology, FoET, Ganpat University, Mehsana 384012, Gujarat, India
| |
Collapse
|
3
|
Matussin SN, Khan F, Harunsani MH, Kim YM, Khan MM. Microwave-assisted synthesis of Ni-doped europium hydroxide for photocatalytic degradation of 4-nitrophenol. Heliyon 2024; 10:e32719. [PMID: 38975178 PMCID: PMC11226821 DOI: 10.1016/j.heliyon.2024.e32719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Microwave-assisted synthesis method was used to prepare europium hydroxide (Eu(OH)3) and different percentages of 1, 5, and 10 % nickel-doped Eu(OH)3 (Ni-Eu(OH)3) nanorods (NRs). X-ray diffraction study showed a hexagonal phase with an average crystallite size in the range of 21 - 35 nm for Eu(OH)3 and Ni-Eu(OH)3 NRs. FT-IR and Raman studies also confirmed the synthesis of Eu(OH)3 and Ni-Eu(OH)3. The synthesized materials showed rod-like morphology with an average length and diameter between 27 - 50 nm and 8 - 13 nm, respectively. The band gap energies of Ni-Eu(OH)3 NRs were reduced (4.06 - 3.50 eV), which indicates that the doping of Ni2+ ions has influenced the band gap energy of Eu(OH)3. The PL study exhibited PL quenching with Ni doping. The photocatalytic degradation of 4-nitrophenol (4-NP) by the synthesized materials under UV light irradiation was investigated, in which 10 % Ni-Eu(OH)3 NRs showed the best response. A kinetic study was also conducted which shows pseudo-first-order kinetics. Based on this, Ni-Eu(OH)3 NRs have shown a potential to be a UV-light active material for photocatalysis.
Collapse
Affiliation(s)
- Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| |
Collapse
|
4
|
Osin OA, Lin S, Gelfand BS, Lee SLJ, Lin S, Shimizu GKH. A molecular extraction process for vanadium based on tandem selective complexation and precipitation. Nat Commun 2024; 15:2614. [PMID: 38521785 PMCID: PMC10960790 DOI: 10.1038/s41467-024-46958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Recycling vanadium from alternative sources is essential due to its expanding demand, depletion in natural sources, and environmental issues with terrestrial mining. Here, we present a complexation-precipitation method to selectively recover pentavalent vanadium ions, V(V), from complex metal ion mixtures, using an acid-stable metal binding agent, the cyclic imidedioxime, naphthalimidedioxime (H2CIDIII). H2CIDIII showed high extraction capacity and fast binding towards V(V) with crystal structures showing a 1:1 M:L dimer, [V2(O)3(C12H6N3O2)2]2-, 1, and 1:2 M:L non-oxido, [V(C12H6N3O2)2] ̶ complex, 2. Complexation selectivity studies showed only 1 and 2 were anionic, allowing facile separation of the V(V) complexes by pH-controlled precipitation, removing the need for solid support. The tandem complexation-precipitation technique achieved high recovery selectivity for V(V) with a selectivity coefficient above 3 × 105 from synthetic mixed metal solutions and real oil sand tailings. Zebrafish toxicity assay confirmed the non-toxicity of 1 and 2, highlighting H2CIDIII's potential for practical and large-scale V(V) recovery.
Collapse
Affiliation(s)
- Oluwatomiwa A Osin
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Shuo Lin
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
5
|
Popiołek Ł, Gawrońska-Grzywacz M, Dziduch A, Biernasiuk A, Piątkowska-Chmiel I, Herbet M. Design, Synthesis, and In Vitro and In Vivo Bioactivity Studies of Hydrazide-Hydrazones of 2,4-Dihydroxybenzoic Acid. Int J Mol Sci 2023; 24:17481. [PMID: 38139308 PMCID: PMC10743905 DOI: 10.3390/ijms242417481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this research, twenty-four hydrazide-hydrazones of 2,4-dihydroxybenzoic acid were designed, synthesized, and subjected to in vitro and in vivo bioactivity studies. The chemical structure of the obtained compounds was confirmed by spectral methods. Antimicrobial activity screening was performed against a panel of microorganisms for all synthesized hydrazide-hydrazones. The performed assays revealed the interesting antibacterial activity of a few substances against Gram-positive bacterial strains including MRSA-Staphylococcus aureus ATCC 43300 (compound 18: 2,4-dihydroxy-N-[(2-hydroxy-3,5-diiodophenyl)methylidene]benzohydrazide-Minimal Inhibitory Concentration, MIC = 3.91 µg/mL). In addition, we performed the in vitro screening of antiproliferative activity and also assessed the acute toxicity of six hydrazide-hydrazones. The following human cancer cell lines were used: 769-P, HepG2, H1563, and LN-229, and the viability of the cells was assessed using the MTT method. The HEK-293 cell line was used as a reference line. The toxicity was tested in vivo on Danio rerio embryos using the Fish Embryo Acute Toxicity (FET) test procedure according to OECD No. 236. The inhibitory concentration values obtained in the in vitro test showed that N-[(4-nitrophenyl)methylidene]-2,4-dihydroxybenzhydrazide (21) inhibited cancer cell proliferation the most, with an extremely low IC50 (Inhibitory Concentration) value, estimated at 0.77 µM for LN-229. In addition, each of the compounds tested was selective against cancer cell lines. The compounds with a nitrophenyl substituent were the most promising in terms of inhibition cancer cell proliferation. The toxicity against zebrafish embryos and larvae was also very low or moderate.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland; (M.G.-G.); (I.P.-C.); (M.H.)
| | - Aleksandra Dziduch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland; (M.G.-G.); (I.P.-C.); (M.H.)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland; (M.G.-G.); (I.P.-C.); (M.H.)
| |
Collapse
|
6
|
Rüzgar A, Karataş Y, Gülcan M. Synthesis and characterization of Pd 0 nanoparticles supported over hydroxyapatite nanospheres for potential application as a promising catalyst for nitrophenol reduction. Heliyon 2023; 9:e21517. [PMID: 38027962 PMCID: PMC10660537 DOI: 10.1016/j.heliyon.2023.e21517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrophenols, which are defined as an important toxic and carcinogenic pollutant in agricultural and industrial wastewater due to their solubility in water, form of resistance against all organisms in water resources. It is vital that these compounds, which are highly toxic as well as highly explosive, are removed from the aquatic ecosystem. In this paper, we reported the preparation and advanced characterization of Pd0 nanoparticles supported over hydroxyapatite nanospheres (Pd0@nano-HAp). The catalytic efficiency of the Pd0@nano-HAp catalyst was examined in the reduction of nitrophenols in water in the presence of NaBH4 as reducing agent and the great activity of catalyst have been specified against 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,4,6-trinitrophenol compounds with 70.6, 82.4, 27.6 and 41.4 min-1 TOFinitial values, respectively. Another important point is that the Pd0@nano-HAp catalyst has perfect reusability performance (at 5th reuse between 68.5 and 92.8 %) for the reduction of nitrophenols. In addition, catalytic studies were carried out at different temperatures in order to determine thermodynamic parameters such as Ea, ΔH≠ and ΔS≠.
Collapse
Affiliation(s)
- Adem Rüzgar
- Department of Chemistry, Van Yüzüncü Yıl University, Van, 65080, Turkey
| | - Yaşar Karataş
- Department of Chemistry, Van Yüzüncü Yıl University, Van, 65080, Turkey
| | | |
Collapse
|
7
|
Chen M, Li M, Li P, Lee SLJ, Tang J, Li Q, Lin S. Enhanced visible light-driven photodegradation of tetracycline by salicylic acid-modified graphitic carbon nitride and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90768-90778. [PMID: 35876997 DOI: 10.1007/s11356-022-22000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The tetracycline (TC) in water has led to serious concern. Graphitic carbon nitride (g-C3N4) photocatalysts were produced via copolymerization of mono-benzene ring-mediated precursors (urea, melamine, and dicyandiamide) involving salicylic acid (SA) for TC degradation. The SA-modified g-C3N4 samples showed improved visible light absorbance, transfer and separation of photogenerated electrons, and prospective photocatalytic application in TC degradation. As a result, the optimal SA-modified g-C3N4 (2 wt% of SA) using urea (CNU-SA-2) showed 2 times higher TC degradation than that of pristine g-C3N4. The process of TC degradation was evaluated by the reduction of antibacterial activity and extensively studied by varying the types of TC, initial pH values, co-existing anions, and natural organic materials. In addition, the catalyst could be reused for at least four cycles, indicating good reusability. The main active species were revealed to be h+ and ·O2- by scavenging experiments and electron spin resonance. The CNU-SA-2 photocatalyst and TC intermediates during degradation had no adverse impact on zebrafish embryos. This work could provide a design strategy and a perspective on the practical application of g-C3N4-based photocatalysts for the treatment of wastewater containing antibiotics.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Mengxue Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Juanjuan Tang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Qian Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| |
Collapse
|
8
|
Wu X, Zhang J, Hu S, Zhang G, Lan H, Peng J, Liu H. Evaluation of degradation performance toward antiviral drug ribavirin using advanced oxidation process and its relations to ecotoxicity evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157851. [PMID: 35934038 PMCID: PMC9351291 DOI: 10.1016/j.scitotenv.2022.157851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 04/14/2023]
Abstract
The rapid spread of coronavirus disease 2019 has increased the consumption of some antiviral drugs, wherein these are discharged into wastewater, posing risks to the ecosystem and human health. Therefore, efforts are being made for the development of advanced oxidation processes (AOPs) to remediate water containing these pharmaceuticals. Here, the toxicity evolution of the antiviral drug ribavirin (RBV) was systematically investigated during its degradation via the UV/TiO2/H2O2 advanced oxidation process. Under optimal conditions, RBV was almost completely eliminated within 20 min, although the mineralization rate was inadequate. Zebrafish embryo testing revealed that the ecotoxicity of the treated RBV solutions increased at some stages and decreased as the reaction time increased, which may be attributed to the formation and decomposition of various transformation products (TPs). Liquid chromatography-mass spectrometry analysis along with density functional theory calculations helped identify possible toxicity increase-causing TPs, and quantitative structure activity relationship prediction revealed that most TPs exhibit higher toxicity than the parent compound. The findings of this study suggest that, in addition to the removal rate of organics, the potential ecotoxicity of treated effluents should also be considered when AOPs are applied in wastewater treatment.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Hastuti LP, Kusumaatmaja A, Darmawan A, Kartini I. Durable photocatalytic membrane of PAN/TiO 2/CNT for methylene blue removal through a cross-flow membrane reactor. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2145221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lathifah Puji Hastuti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Kusumaatmaja
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Adi Darmawan
- Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Semarang, Indonesia
| | - Indriana Kartini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Indonesia Natural Dye Institute (INDI), Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Synthesis of a biomimetically formed core–shell SiO2@Ag photocatalyst for the degradation of aqueous organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Lutic D, Sescu AM, Siamer S, Harja M, Favier L. Excellent ambient oxidation and mineralization of an emerging water pollutant using Pd-doped TiO 2 photocatalyst and UV-A irradiation. CR CHIM 2022. [DOI: 10.5802/crchim.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Chen M, Li M, Lee SLJ, Zhao X, Lin S. Constructing novel graphitic carbon nitride-based nanocomposites - From the perspective of material dimensions and interfacial characteristics. CHEMOSPHERE 2022; 302:134889. [PMID: 35551931 DOI: 10.1016/j.chemosphere.2022.134889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) graphitic carbon nitride (g-C3N4), a fascinating metal-free conjugated polymer, has garnered immense interest in the fields of solar power generation and environmental remediation. The construction of g-C3N4-based nanocomposites with materials of various dimensions can further improve their photocatalytic activities by surface area enlargement, bandgap tuning, heterojunction formation, etc. In this paper, we comprehensively reviewed the design, synthesis, and functionalities of g-C3N4-based nanocomposites based on their applications in hydrogen evolution, CO2 reduction, and pollutants removal. We provided detailed analyses on the integration of 2D g-C3N4 with zero-, one-, two-, and three-dimensional materials with a focus on their interfacial characteristics and functional improvement. This review aims to stimulate fresh ideas on the interfacial engineering of g-C3N4-based nanocomposites to broaden their future applications.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Mengxue Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xi Zhao
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Sijie Lin
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Li M, Li P, Zhou Q, Lee SLJ. A Mini Review on Persulfate Activation by Sustainable Biochar for the Removal of Antibiotics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5832. [PMID: 36079215 PMCID: PMC9456675 DOI: 10.3390/ma15175832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in water bodies poses ecological risks to aquatic organisms and humans and is a global environmental issue. Persulfate-based advanced oxidation processes (PS-AOPs) are efficient for the removal of antibiotics. Sustainable biochar materials have emerged as potential candidates as persulfates (Peroxymonosulfate (PMS) and Peroxydisulfate (PDS)) activation catalysts to degrade antibiotics. In this review, the feasibility of pristine biochar and modified biochar (non-metal heteroatom-doped biochar and metal-loaded biochar) for the removal of antibiotics in PS-AOPs is evaluated through a critical analysis of recent research. The removal performances of biochar materials, the underlying mechanisms, and active sites involved in the reactions are studied. Lastly, sustainability considerations for future biochar research, including Sustainable Development Goals, technical feasibility, toxicity assessment, economic and life cycle assessment, are discussed to promote the large-scale application of biochar/PS technology. This is in line with the global trends in ensuring sustainable production.
Collapse
Affiliation(s)
- Mengxue Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qi Zhou
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Zhang L, Ma P, Dai L, Bu Z, Li X, Yu W, Cao Y, Guan J. Removal of pollutants via synergy of adsorption and photocatalysis over MXene-based nanocomposites. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
15
|
Audevard J, Benyounes A, Castro Contreras R, Abou Oualid H, Kacimi M, Serp P. Multifunctional Catalytic Properties of Pd/CNT Catalysts for 4‐Nitrophenol Reduction. ChemCatChem 2022. [DOI: 10.1002/cctc.202101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jeremy Audevard
- JLCC-CNRS Université de Toulouse UPR 8241 CNRS, INPT 31030 Toulouse France
| | - Anas Benyounes
- JLCC-CNRS Université de Toulouse UPR 8241 CNRS, INPT 31030 Toulouse France
| | | | | | - Mohamed Kacimi
- Laboratory of Physical Chemistry of Materials Catalysis and Environment (URAC26) Department of Chemistry Faculty of Science University of Mohammed V 10106 Rabat Morocco
| | - Philippe Serp
- JLCC-CNRS Université de Toulouse UPR 8241 CNRS, INPT 31030 Toulouse France
| |
Collapse
|
16
|
Amraei M, Farhadi S, Mohammadi-Gholami A. Ag nanoparticles supported on a magnetic NiFe 2O 4/MIL-101(Fe) metal–organic framework nanocomposite for the room temperature rapid catalytic reduction of nitrophenols and nitroanilines. NEW J CHEM 2022. [DOI: 10.1039/d2nj02089k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Ag@NiFe2O4/MIL101(Fe) ternary magnetic nanocomposite was synthesized for the room temperature rapid catalytic reduction of nitrophenols and nitroanilines.
Collapse
Affiliation(s)
- Mirshad Amraei
- Department of Chemistry, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University, Khorramabad, 68151-44316, Iran
| | | |
Collapse
|
17
|
Alam KM, Jensen CE, Kumar P, Hooper RW, Bernard GM, Patidar A, Manuel AP, Amer N, Palmgren A, Purschke DN, Chaulagain N, Garcia J, Kirwin PS, Shoute LCT, Cui K, Gusarov S, Kobryn AE, Michaelis VK, Hegmann FA, Shankar K. Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C 3N 5 Core-Shell Nanowires. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47418-47439. [PMID: 34608803 DOI: 10.1021/acsami.1c08550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a potential solution to the problem of extraction of photogenerated holes from CdS nanocrystals and nanowires. The nanosheet form of C3N5 is a low-band-gap (Eg = 2.03 eV), azo-linked graphenic carbon nitride framework formed by the polymerization of melem hydrazine (MHP). C3N5 nanosheets were either wrapped around CdS nanorods (NRs) following the synthesis of pristine chalcogenide or intercalated among them by an in situ synthesis protocol to form two kinds of heterostructures, CdS-MHP and CdS-MHPINS, respectively. CdS-MHP improved the photocatalytic degradation rate of 4-nitrophenol by nearly an order of magnitude in comparison to bare CdS NRs. CdS-MHP also enhanced the sunlight-driven photocatalytic activity of bare CdS NWs for the decolorization of rhodamine B (RhB) by a remarkable 300% through the improved extraction and utilization of photogenerated holes due to surface passivation. More interestingly, CdS-MHP provided reaction pathway control over RhB degradation. In the absence of scavengers, CdS-MHP degraded RhB through the N-deethylation pathway. When either hole scavenger or electron scavenger was added to the RhB solution, the photocatalytic activity of CdS-MHP remained mostly unchanged, while the degradation mechanism shifted to the chromophore cleavage (cycloreversion) pathway. We investigated the optoelectronic properties of CdS-C3N5 heterojunctions using density functional theory (DFT) simulations, finite difference time domain (FDTD) simulations, time-resolved terahertz spectroscopy (TRTS), and photoconductivity measurements. TRTS indicated high carrier mobilities >450 cm2 V-1 s-1 and carrier relaxation times >60 ps for CdS-MHP, while CdS-MHPINS exhibited much lower mobilities <150 cm2 V-1 s-1 and short carrier relaxation times <20 ps. Hysteresis in the photoconductive J-V characteristics of CdS NWs disappeared in CdS-MHP, confirming surface passivation. Dispersion-corrected DFT simulations indicated a delocalized HOMO and a LUMO localized on C3N5 in CdS-MHP. C3N5, with its extended π-conjugation and low band gap, can function as a shuttle to extract carriers and excitons in nanostructured heterojunctions, and enhance performance in optoelectronic devices. Our results demonstrate how carrier dynamics in core-shell heterostructures can be manipulated to achieve control over the reaction mechanism in photocatalysis.
Collapse
Affiliation(s)
- Kazi M Alam
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Charles E Jensen
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Pawan Kumar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guy M Bernard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Aakash Patidar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ajay P Manuel
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Naaman Amer
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Anders Palmgren
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - David N Purschke
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Narendra Chaulagain
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - John Garcia
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Phillip S Kirwin
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lian C T Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kai Cui
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Sergey Gusarov
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Alexander E Kobryn
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Frank A Hegmann
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
18
|
Synthesis of sponge-like TiO2 with surface-phase junctions for enhanced visible-light photocatalytic performance. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Naik AQ, Zafar T, Shrivastava VK. Environmental Impact of the Presence, Distribution, and Use of Artificial Sweeteners as Emerging Sources of Pollution. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:6624569. [PMID: 33936216 PMCID: PMC8060115 DOI: 10.1155/2021/6624569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Artificial sweeteners are posing a new threat to the environment. The water ecosystem is the primary recipient of these emerging contaminants. Once ingested, sufficient amount of these artificial sweeteners escape unchanged from the human body and are added to the environment. However, some are added in the form of their breakdown products through excretion. Artificial sweeteners are resistant to wastewater treatment processes and are therefore continuously introduced into the water environments. However, the environmental behavior, fate, and long-term ecotoxicological contributions of artificial sweeteners in our water resources still remain largely unknown. Some artificial sweeteners like saccharin are used as a food additive in animal feeds. It also forms the degradation product of the sulfonylurea herbicides. All artificial sweeteners enter into the wastewater treatment plants from the industries and households. From the effluents, they finally reside into the receiving environmental bodies including wastewaters, groundwaters, and surface waters. The global production of these sweeteners is several hundred tons annually and is continuously being added into the environment.
Collapse
Affiliation(s)
- Ab Qayoom Naik
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Tabassum Zafar
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Vinoy Kumar Shrivastava
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| |
Collapse
|
20
|
Yin J, Ge B, Jiao T, Qin Z, Yu M, Zhang L, Zhang Q, Peng Q. Self-Assembled Sandwich-like MXene-Derived Composites as Highly Efficient and Sustainable Catalysts for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1267-1278. [PMID: 33439659 DOI: 10.1021/acs.langmuir.0c03297] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photocatalysts play an increasingly important role in environmental remediation polluted by industrial wastewater. However, the preparation of adsorbents and catalysts with high activity by simple and easy methods is still a great challenge. Here, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 was prepared by an easily available solvent reduction measure for the highly efficient catalytic nitro compounds. In particular, sandwich-like composite catalyst Cu2O/TiO2/Ti3C2 exhibits excellent catalysis for 2-nitroaniline (2-NA) and 4-nitrophenol (4-NP), and its pseudo-first-order reaction rate constants (k) are 0.163 and 0.114 min-1, respectively. Interestingly, even after eight consecutive cycles of catalytic experiments, the conversion rates of catalytic 2-NA and 4-NP are still greater than 95 and 92%, respectively, demonstrating that the obtained catalyst has excellent catalytic capability and a high reutilization rate. The excellent catalytic performances of Cu2O/TiO2/Ti3C2 can be attributed to the fact that Ti3C2 provides a greater reaction site for the formation of Cu2O and reduces the aggregation during the formation of Cu2O by in situ synthesis. Therefore, ternary composite catalyst Cu2O/TiO2/Ti3C2 prepared by solvent reduction not only supplies a technical method for the catalytic reaction of MXene-based material but also lays the foundation for the development of new photocatalysts.
Collapse
|
21
|
Zhou X, Wang X, Li J, Zhang X. Enhanced photocatalytic activity in metal phthalocyanine-sensitized TiO2 nanorods. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04362-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Abstract
This article presents an overview of the reports on the doping of TiO2 with carbon, nitrogen, and sulfur, including single, co-, and tri-doping. A comparison of the properties of the photocatalysts synthesized from various precursors of TiO2 and C, N, or S dopants is summarized. Selected methods of synthesis of the non-metal doped TiO2 are also described. Furthermore, the influence of the preparation conditions on the doping mode (interstitial or substitutional) with reference to various types of the modified TiO2 is summarized. The mechanisms of photocatalysis for the different modes of the non-metal doping are also discussed. Moreover, selected applications of the non-metal doped TiO2 photocatalysts are shown, including the removal of organic compounds from water/wastewater, air purification, production of hydrogen, lithium storage, inactivation of bacteria, or carbon dioxide reduction.
Collapse
|
23
|
Multiphase TiO2 aerogels incorporated with Pd for mixed catalysis in wide UV–Vis spectrum. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01627-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Qian Y, Qin C, Chen M, Lin S. Nanotechnology in soil remediation - applications vs. implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110815. [PMID: 32559688 DOI: 10.1016/j.ecoenv.2020.110815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Engineered nanomaterials (ENMs) and nanotechnology have shown great potential in addressing complex problems and creating innovative approaches in soil remediation due to their unique features of high reactivity, selectivity and versatility. Meanwhile, valid concerns exist with regard to their implications towards the terrestrial environment and the ecosystem. This review summarizes: (i) the applications and the corresponding mechanisms of various types of ENMs for soil remediation; (ii) the environmental behavior of ENMs in soils and their interactions with the soil content; (iii) the environmental implications of ENMs during remedial applications. The overall objective is to promote responsible innovations so as to take optimal advantage of ENMs and nanotechnology while minimizing their adverse effects to the ecological system. It is critical to establish sustainable remediation methods that ensure a healthy and safe environment without bringing additional risk.
Collapse
Affiliation(s)
- Yuting Qian
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Caidie Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mengmeng Chen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
25
|
Effect of Calcination Time on the Physicochemical Properties and Photocatalytic Performance of Carbon and Nitrogen Co-Doped TiO2 Nanoparticles. Catalysts 2020. [DOI: 10.3390/catal10080847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of highly active nano catalysts in advanced oxidation processes (AOPs) improves the production of non-selective hydroxyl radicals and co-oxidants for complete remediation of polluted water. This study focused on the synthesis and characterisation of a highly active visible light C–N-co-doped TiO2 nano catalyst that we prepared via the sol-gel method and pyrolysed at 350 °C for 105 min in an inert atmosphere to prevent combustion of carbon moieties. Then we prolonged the pyrolysis holding time to 120 and 135 min and studied the effect of these changes on the crystal structure, particle size and morphology, electronic properties and photocatalytic performance. The physico-chemical characterisation proved that alteration of pyrolysis holding time allows control of the amount of carbon in the TiO2 catalyst causing variations in the band gap, particle size and morphology and induced changes in electronic properties. The C–N–TiO2 nano composites were active under both visible and UV light. Their improved activity was ascribed to a low electron–hole pair recombination rate that enhanced the generation of OH· and related oxidants for total deactivation of O.II dye. This study shows that subtle differences in catalyst preparation conditions affect its physico-chemical properties and catalytic efficiency under solar and UV light.
Collapse
|
26
|
Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020. [DOI: 10.3390/catal10070804] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A high-efficiency method to deal with pollutants must be found because environmental problems are becoming more serious. Photocatalytic oxidation technology as the environmentally-friendly treatment method can completely oxidate organic pollutants into pollution-free small-molecule inorganic substances without causing secondary pollution. As a widely used photocatalyst, titanium dioxide (TiO2) can greatly improve the degradation efficiency of pollutants, but several problems are noted in its practical application. TiO2 modified by different materials has received extensive attention in the field of photocatalysis because of its excellent physical and chemical properties compared with pure TiO2. In this review, we discuss the use of different materials for TiO2 modification, highlighting recent developments in the synthesis and application of TiO2 composites using different materials. Materials discussed in the article can be divided into nonmetallic and metallic. Mechanisms of how to improve catalytic performance of TiO2 after modification are discussed, and the future development of modified TiO2 is prospected.
Collapse
|
27
|
A mechanistic study and in-vivo toxicity bioassay on acetamiprid photodegradation over the zeolite supported cerium-based photocatalyst. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Abstract
The low molecular-mass organic compound 4-nitrophenol is involved in many chemical processes and is commonly present in soils and in surface and ground waters, thereby causing severe environmental impact and health risk. Several methods have been proposed for its transformation (bio and chemical degradation). However, these strategies not only produce equally or more toxic aromatic species but also require harsh operating conditions and/or time-consuming treatments. In this context, we report a comprehensive and systematic study of the electrochemical reduction of 4-nitrophenol as a viable alternative. We have explored the electrochemical reduction of this pollutant over different metallic and carbonaceous substrata. Specifically, we have focused on the use of gold and silver working electrodes since they combine a high electrocatalytic activity for 4-nitrophenol reduction and a low electrocatalytic capacity for hydrogen evolution. The influence of the pH, temperature, and applied potential have also been considered as crucial parameters in the overall optimization of the process. While acidic media and high temperatures favor the clean reduction of 4-nitrophenol to 4-aminophenol, the simultaneous hydrogen evolution is pernicious for this purpose. Herein, a simple and effective electrochemical method for the transformation of 4-nitrophenol into 4-aminophenol is proposed with virtually no undesired by-products.
Collapse
|
29
|
Yadav V, Verma P, Sharma H, Tripathy S, Saini VK. Photodegradation of 4-nitrophenol over B-doped TiO 2 nanostructure: effect of dopant concentration, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10966-10980. [PMID: 31950423 DOI: 10.1007/s11356-019-06674-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The 4-nitrophenol (4-NP) is one of the carcinogenic pollutants listed by US EPA and has been detected in industrial wastewater. This study investigates the photocatalytic degradation of 4-NP with TiO2 and boron (B)-doped TiO2 nanostructures. The degradation on undoped and B-doped TiO2 with various boron loadings (1-7%) was studied to establish a relationship between structure, interface, and photo-catalytic properties. The results of XRD, micro Raman, FTIR, and HRTEM show that the B doping has improved the crystallinity and induces rutile phase along with anatase (major phase). The N2 adsorption-desorption, SEM-EDX, and XPS indicated that the B induced the formation of mesoporous nanostructures in TiO2 and occupies interstitial sites by forming Ti-O-B type linkage. The surface area of pure TiO2 was decreased from 235.4 to 63.3 m2/g in B-TiO2. The photo-physical properties were characterized by UV-Vis DRS, which showed decrease in the optical band-gap of pure TiO2 (2.98 eV) to B-TiO2 (2.95 eV). The degradation results demonstrated that the B doping improved the photocatalytic activity of TiO2; however, this improvement depends on the B concentration in doped TiO2. B-doped TiO2 (> 5% B) showed 90 % degradation of 4-NP, whereas the undoped TiO2 can degrade only 79 % of 4-NP. The degradation followed pseudo-first-order kinetics with rate constant values of 0.006 min-1 and 0.0322 min-1 for pure TiO2 and B-TiO2 respectively. The existence of a reduced form of Ti3+ on the surface of TiO2 (as evidence from XPS) was found responsible for enhancement in photocatalytic activity.
Collapse
Affiliation(s)
- Vandana Yadav
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Priyanka Verma
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Himani Sharma
- Department of Physics, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Sudhiranjan Tripathy
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Vipin Kumar Saini
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
30
|
Synthesis of pure and C/S/N co-doped Titania on Al mesh and their photocatalytic usage in Benzene degradation. Sci Rep 2019; 9:16648. [PMID: 31719659 PMCID: PMC6851378 DOI: 10.1038/s41598-019-53189-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Pure and co-doped Titania thin films were prepared on aluminum substrates through the sol-gel method. The co-doped sample showed higher photocatalytic activity on benzene degradation compared to pure TiO2 under visible light illumination. XRD results showed the anatase phase for both TiO2 and co-doped TiO2 lattices with an average crystalline size of 12.9 and 10.4 nm, respectively. According to the UV-visible absorption spectra results, co-doped Titania showed higher visible light absorption compared to pure Titania. The synergistic effect of dopants caused a redshift to visible light absorption and also the lifetime of the photogenerated electron-hole were increased by induced electron levels in Titania lattice. The novelty of this study is the reactor's specific design. We employed Al mesh as thin film substrate for 3 main reasons, first, the large surface area of the Al mesh causes to increase specific surface area of the photocatalysts, also it is a formable substrate which can be engineered geometrically to decrease the shadow spots so the thin films will receive the highest light irradiation. Also, the Al mesh flexibility facilitates the procedure of reactor design to reach a minimum pressure drop of airflow while it is installed in the air conditioners or HVAC systems.
Collapse
|
31
|
Ruthenium Supported on Ionically Cross-linked Chitosan-Carrageenan Hybrid MnFe2O4 Catalysts for 4-Nitrophenol Reduction. Catalysts 2019. [DOI: 10.3390/catal9030254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein, we report a facile procedure to synthesize the hybrid magnetic catalyst (Ru@CS-CR@Mn) using ruthenium (Ru) supported on ionically cross-linked chitosan-carrageenan (CS-CR) and manganese ferrite (MnFe2O4) nanoparticles with excellent catalytic activity. The ionic gelation of CS-CR is acting as a protecting layer to promote the encapsulation of MnFe2O4 and Ru nanoparticles by electrostatic interactions. The presence of an active metal and a CS-CR layer on the as-prepared Ru@CS-CR@Mn catalyst was well determined by a series of physicochemical analyses. Subsequently, the catalytic performances of the Ru@CS-CR@Mn catalysts were further examined in the 4-nitrophenol (4-NP) reduction reaction in the presence of sodium borohydride (reducing agent) at ambient temperature. The Ru@CS-CR@Mn catalyst performed excellent catalytic activity in the 4-NP reduction, with a turnover frequency (TOF) values of 925 h−1 and rate constant (k) of 0.078 s−1. It is worth to mentioning that the Ru@CS-CR@Mn catalyst can be recycled and reused up to at least ten consecutive cycles in the 4-NP reduction with consistency in catalytic performance. The Ru@CS-CR@Mn catalyst is particularly attractive as a catalyst due to its superior catalytic activity and superparamagnetic properties for easy separation. We foresee this catalyst having high potential to be extended in a wide range of chemistry applications.
Collapse
|
32
|
Law JCF, Leung KSY. Redox mediators and irradiation improve fenton degradation of acesulfame. CHEMOSPHERE 2019; 217:374-382. [PMID: 30419391 DOI: 10.1016/j.chemosphere.2018.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Widely recognized as a promising approach to degrading recalcitrant pollutants, Advanced Oxidation Processes (AOPs) have drawn much attention for their effectiveness and efficiency. Among all the AOPs, the Fenton system has been widely applied for oxidation and mineralization of micropollutants due to its ease of implementation and high catalytic efficiency. However, the necessity of preceding acidification, together with rapid consumption and slow regeneration of Fe(II) resulting in deterioration of reactivity, has reduced its competitiveness as a practical option for water treatment. Acknowledging the above drawbacks, this study investigates the potential viable option to enhance the Fenton system. Acesulfame was chosen as the model compound due to its ubiquitous occurrence and persistence in the environment. UV-assisted photo-Fenton treatment was found to remove the parent compound effectively; the transformation profile of acesulfame was identified and elucidated with the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Prolonged UV photo-Fenton treatment was effective for mineralization of the majority of the transformation products, without increasing the overall toxicity as indicated by Vibrio fischeri bioluminescence assay. The positive effects of the addition of redox mediators to Fenton systems at neutral pH were confirmed in this study. The results could be the basis for further development of homogeneous catalytic degradation techniques for the oxidation of environmental contaminants at circumneutral pHs to neutral pHs.
Collapse
Affiliation(s)
- Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
33
|
Cheng X, Zu L, Jiang Y, Shi D, Cai X, Ni Y, Lin S, Qin Y. A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2−x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem Commun (Camb) 2018; 54:11622-11625. [DOI: 10.1039/c8cc05866k] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pseudo-Fenton reaction works synergistically with photocatalysis to greatly accelerate the oxidative degradation rate.
Collapse
Affiliation(s)
- Xiaomei Cheng
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University
- Wuhu
- China
| | - Lianhai Zu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine
- Shanghai 200092
- China
| | - Yue Jiang
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University
- Shanghai 200092
- China
| | - Donglu Shi
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine
- Shanghai 200092
- China
- The Materials Science and Engineering Program, Dept. of Mechanical and Engineering, College of Engineering and Applied Science, University of Cincinnati
- Cincinnati
| | - Xiaoming Cai
- Center for Genetic Epidemiology and Genomics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University
- Suzhou
- China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University
- Wuhu
- China
| | - Sijie Lin
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University
- Shanghai 200092
- China
| | - Yao Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine
- Shanghai 200092
- China
| |
Collapse
|