1
|
Wallace WT, Hayward JS, Marsh AR, Bartley JK. The Antisolvent Precipitation of CuZnOx Mixed Oxide Materials Using a Choline Chloride-Urea Deep Eutectic Solvent. Molecules 2024; 29:3357. [PMID: 39064935 PMCID: PMC11279927 DOI: 10.3390/molecules29143357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Metal oxides have applications in a variety of different fields, and new synthesis methods are needed to control their properties and improve their performance as functional materials. In this study, we investigated a low-cost antisolvent precipitation method using a choline chloride-urea deep eutectic solvent to precipitate CuZnOx materials using water as the antisolvent. Using this methodology, the metal oxide materials can be precipitated directly from the deep eutectic solvent without the need for a high-temperature calcination step that can lead to a reduction in defects and surface area, which are important properties in applications such as catalysis.
Collapse
Affiliation(s)
| | | | | | - Jonathan K. Bartley
- Cardiff Catalysis Institute, School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK; (W.T.W.); (J.S.H.); (A.R.M.)
| |
Collapse
|
2
|
Zhang H, Cao Y, Wang S, Tang Y, Tian L, Cai W, Wei Z, Wu Z, Zhu Y, Guo Q. Photocatalytic removal of ammonia nitrogen from water: investigations and challenges for enhanced activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41824-41843. [PMID: 38862798 DOI: 10.1007/s11356-024-33891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Ammonia nitrogen (NH3-N/NH4+-N) serves as a crucial chemical in biochemistry and fertilizer synthesis. However, it is also a toxic compound, posing risks from eutrophication to direct threats to human health. Ammonia nitrogen pollution pervades water sources, presenting a significant challenge. While several water treatment technologies exist, biological treatment, though widely used, has its limitations. Hence, green and efficient photocatalytic technology emerges as a promising solution. However, current monolithic semiconductor photocatalysts prove inadequate in controlling ammonia nitrogen pollution. Therefore, this review focuses on enhancing semiconductor photocatalysts' efficiency through modification, discussing four mechanisms: (1) mono-ionic modification; (2) metallic and non-metallic modification; (3) construct heterojunctions; and (4) enhancement of synergistic effects of multiple technologies. The influencing factors of photocatalytic ammonia nitrogen removal efficiency are also explored. Moreover, the review outlines the limitations of current photocatalytic pollution treatment and discusses future development trends and research challenges. Currently, the main products of ammonia nitrogen removal include NO3-, NO2-, and N2. To mitigate secondary pollution, the green process of converting ammonia nitrogen to N2 using photocatalysis emerges as a fundamental approach for future treatment. Overall, this review aims to deepen understanding of photocatalysis in ammonia nitrogen treatment and guide researchers toward widespread implementation of this endeavor.
Collapse
Affiliation(s)
- Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China.
- Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou, 730030, China.
| | - Yang Cao
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Shaofeng Wang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Yuling Tang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Lihong Tian
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Wenrui Cai
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Zhiqiang Wei
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Zhiguo Wu
- Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou, 730030, China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730030, China
| | - Qi Guo
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730030, China
| |
Collapse
|
3
|
Allen DJ, Huang J, Farrell M, Mosley LM. Novel insight into ammonium, phosphate, and iron(II) dynamics in the sediment porewater of a constructed wetland under artificial aeration through the diffusive equilibrium in thin films technique. ENVIRONMENTAL RESEARCH 2023; 236:116746. [PMID: 37517502 DOI: 10.1016/j.envres.2023.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The analysis of porewater concentrations in constructed wetland sediments could help to understand biogeochemical processes, the sources and sinks of nutrients, and their effect on overlying water quality. In this study, we measured high-resolution porewater concentration profiles of ammonium (NH4+-N), nitrate (NO3N), phosphate (PO43--P), and ferrous iron (Fe(II)) in-situ in the Laratinga constructed wetland in Mount Barker (South Australia) using diffusive equilibration in thin films (DET) techniques. Measurements were taken under light and dark conditions, and non-aerated and aerated conditions to determine the effect on sediment porewater nutrient concentrations. Baseline surface water nutrient concentrations (NH4+-N > 36 mg L-1, PO43--P > 0.43 mg L-1) greatly exceeded water quality guideline criteria. Aeration of the water column alleviated night-time hypoxic conditions (i.e. dissolved oxygen increased from a minimum of 0.7 mg L-1 to a minimum of 4 mg L-1), and increased the redox potential in the sediment. Significant differences were present for NH4+-N, PO43--P, and Fe(II) concentrations with depth in the sediment. Ammonium concentrations in the sediment reduced under aerated conditions, presumably due to enhanced nitrification. However it was observed that PO43--P and Fe(II) concentrations increased significantly with aeration, especially under dark conditions, and were strongly correlated (R2>0.8). This was not what was hypothesised and points to complex interactions between Fe and P in the sediment. Nitrate concentrations in the sediment were below the detection limit (<0.9 mg L-1) which suggests limited nitrification-denitrification is occurring. Overall the results suggest that DET techniques are useful tools for quantifying porewater concentrations of nutrients in constructed wetlands under various environmental conditions.
Collapse
Affiliation(s)
- Danielle J Allen
- School of Biological Sciences, The University of Adelaide, Kaurna Country, Urrbrae, South Australia 5064, Australia; CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia 5064, Australia
| | - Jianyin Huang
- STEM, University of South Australia, Mawson Lakes Blvd, Kaurna Country, Mawson Lakes, South Australia 5095, Australia
| | - Mark Farrell
- CSIRO Agriculture & Food, Kaurna Country, Gate 4 Waite Road, Urrbrae, South Australia 5064, Australia
| | - Luke M Mosley
- School of Biological Sciences, The University of Adelaide, Kaurna Country, Urrbrae, South Australia 5064, Australia.
| |
Collapse
|
4
|
Liu N, Sun Z, Zhang H, Klausen LH, Moonhee R, Kang S. Emerging high-ammonia‑nitrogen wastewater remediation by biological treatment and photocatalysis techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162603. [PMID: 36871738 DOI: 10.1016/j.scitotenv.2023.162603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The bacterial and photocatalysis techniques have been widely applied into the remediation of ammonia nitrogen wastewater. Although traditional microbial methods had been verified useful; more efficient, energy-saving and controllable candidate treatment methods are still urgently needed to cover the increasingly diverse ammonia nitrogen pollution cases. The bacterial treatment technique for ammonia nitrogen mainly depends on the ammonia nitrogen oxidation-reduction (e.g. nitrification, denitrification) by nitrifying bacteria and denitrifying bacteria, but these reactions suffer from slow denitrifying kinetic process and uncontrolled disproportionation reaction. In comparison, the photocatalysis technique based on photoelectrons is more efficient and has some advantages, such as low temperature reaction and long life, while the photocatalysis technique can not perform multiple complex biochemical reactions. Despite much scientific knowledge obtained about this issue recently, such research has yet not been widely adopted in the industry because of many concerns about subsequent catalyst stability and economic feasibility. This review summarized and discussed the very recent achievements and key problems on remediation of high-ammonia‑nitrogen wastewater and oxidation driven by bacterial treatment and photocatalysis techniques, as well as the most promising future directions for these two techniques, especially the potential of jointly bacterial-photocatalysis techniques.
Collapse
Affiliation(s)
- Nian Liu
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China; Institute of Photochemistry and Photocatalysts, University of Shanghai for Science and Technology, 200093 Shanghai, PR China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 200090 Shanghai, PR China
| | - Huan Zhang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China; Institute of Photochemistry and Photocatalysts, University of Shanghai for Science and Technology, 200093 Shanghai, PR China
| | | | - Ryu Moonhee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Shifei Kang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China; Institute of Photochemistry and Photocatalysts, University of Shanghai for Science and Technology, 200093 Shanghai, PR China.
| |
Collapse
|
5
|
Li F, Wang P, Li M, Zhang T, Li Y, Zhan S. Efficient photo-Fenton reaction for tetracycline and antibiotic resistant bacteria removal using hollow Fe-doped In 2O 3 nanotubes: From theoretical research to practical application. WATER RESEARCH 2023; 240:120088. [PMID: 37247435 DOI: 10.1016/j.watres.2023.120088] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
The low exposure of active sites and the slow electron transfer rate still restrict the wide application of the photo-Fenton system of Fe-based photocatalyst in practical water treatment. Herein, we prepared a hollow Fe-doped In2O3 nanotube (h-Fe-In2O3) catalyst for activating hydrogen peroxide (H2O2) to remove tetracycline (TC) and antibiotic resistant bacteria (ARB). Incorporation of Fe could shorten the band gap and increase the absorption capacity of visible light. Meanwhile, the increase of electron density at the Fermi level promotes the interfacial electron transport. The large specific surface area of the tubular structure exposes more Fe active site and the Fe-O-In site reduces the energy barrier of H2O2 activation, resulting in more and faster formation of hydroxyl radicals (•OH). After continuous operation for 600 min, the h-Fe-In2O3 reactor still can remove 85% TC and about 3.5 log ARB in secondary effluent, showing good stability and durability for practical wastewater treatment.
Collapse
Affiliation(s)
- Fei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingmei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi Li
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Hashemi SF, Sabbaghi S, Saboori R, Zarenezhad B. Photocatalytic degradation of ammonia with titania nanoparticles under UV light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68600-68614. [PMID: 35543781 DOI: 10.1007/s11356-022-20408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Ammonia is one of the major pollutants of water resources, posing a serious threat to human health and the environment. Titania nanoparticles were used to examine the photocatalytic degradation of ammonia from an aqueous solution in this study. Titania nanoparticles (NPs) were first synthesized via the sol-gel method, then characterized using XRD, FTIR, DLS, EDX, FE-SEM, and TEM analyses. Four effective parameters (pH, initial concentration of pollutant, catalyst dosage, and irradiation time) for photocatalytic degradation were explored using Design-Expert Software. The greatest photocatalytic activity of titania NPs was found in optimal conditions, according to the findings (97%). The optimum amounts of catalyst dosage, initial pollutant concentration, irradiation time, and pH were obtained at 0.3 g/l, 1500 mg/l, 120 min, and 12, respectively. Furthermore, studies revealed that pH was the most efficient variable in comparison with others and that increasing the pH value from 8 to 12 boosted ammonia removal from 40 to 97%. NPs showed high stability as the ammonia removal decreased from 96.96% to 65% after four cycles. Generally, this research has created a precedent for the development of morphology-dependent photocatalysts for the degradation of organic contaminants.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Hashemi
- Department of Chemical Engineering, Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Samad Sabbaghi
- Nanochemical Engineering Department, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
- Drilling Nano Fluid Lab, Shiraz University, Shiraz, Iran.
| | | | - Bahman Zarenezhad
- Department of Chemical Engineering, Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
7
|
Dayana Priyadharshini S, Manikandan S, Kiruthiga R, Rednam U, Babu PS, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119377. [PMID: 35490997 DOI: 10.1016/j.envpol.2022.119377] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide can be used to store energy, as electrodes and purify industrial and domestic wastewater as photocatalysts and adsorbents because of its remarkable thermal, electrical, and chemical capabilities. Toward understanding graphene oxide (GO) based nanomaterials considering the background factors, the present review study investigated their characteristics, preparation methods, and characterization processes. The removal of contaminants from wastewater has recently been a focus of attention for materials based on GO. Progress in GO synthesis and surface modification has shown that they can be used to immobilize enzymes. It is possible to immobilize enzymes with varying characteristics on graphene-oxide-based substrates without sacrificing their functioning, thus developing a new environmental remediation platform utilizing nano biocatalysts. GO doping and co-doping with a variety of heterogeneous semiconductor-based metal oxides were included in a brief strategy for boosting GO efficiency. A high band-gap material was also explored as a possibility for immobilization, which shifts the absorption threshold to the visible range and increases photoactivity. For water treatment applications, graphene-based nanomaterials were used in Fenton reactions, photocatalysis, ozonation, photo electrocatalysis, photo-Fenton, and a combination of photon-Fenton and photocatalysis. Nanoparticles made from GO improved the efficiency of composite materials when used for their intended applications. As a result of the analysis, prospects and improvements are clear, especially when it comes to scaling up GO-based wastewater treatment technologies.
Collapse
Affiliation(s)
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - R Kiruthiga
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - Udayabhaskar Rednam
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Ahmad N, Anae J, Khan MZ, Sabir S, Campo P, Coulon F. A novel CuBi 2O 4/polyaniline composite as an efficient photocatalyst for ammonia degradation. Heliyon 2022; 8:e10210. [PMID: 36042739 PMCID: PMC9420373 DOI: 10.1016/j.heliyon.2022.e10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 08/03/2022] [Indexed: 10/27/2022] Open
Abstract
A novel polyaniline (PANI) coupled CuBi2O4 photocatalyst was successfully synthesized via in situ polymerization of aniline with pre-synthesized CuBi2O4 composites. The structure and morphology of the synthesized CuBi2O4/PANI composite photocatalyst were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and the photocatalytic performance were evaluated through degradation process of ammonia in water under visible light irradiation. The resultant CuBi2O4/PANI composite showed exceptional stability as its structure and morphology persisted even after being immersed in water for 2 days. The composite photocatalyst exhibited improved charge transport properties due to the electrical conductivity of the PANI protective layer, leading to enhanced photoelectrochemical activity in water and removal of ammonia. PANI with CuBi2O4 (10% wt) heterostructure was applied for photodegradation of ammonia and exhibited a 96% ammonia removal efficiency (30 mg/l with 0.1 g photocatalyst and 180 min), as compared to PANI (78%) and CuBi2O4 (70%). The degradation was attributed to the efficient charge transfer (e- and h+) and formation of reactive oxygen species upon simulated sunlight exposure. The present work suggests that the CuBi2O4/PANI photocatalyst can be synthesized in a simple process and provides an excellent adsorption capacity, high photocatalytic activity, long term stability, and reusability making it a promising alternative for ammonia removal from wastewater.
Collapse
Affiliation(s)
- Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK.,Department of Chemistry, Integral University, Lucknow, India, 226026
| | - Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India, 202002
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India, 202002
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| |
Collapse
|
9
|
“Fe3+ modified zinc oxide nanomaterial as an efficient, multifaceted material for photocatalytic degradation of MB dye and ethanol gas sensor as part of environmental rectification”. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Maiti M, Sarkar M, Maiti S, Liu D. Gold decorated shape-tailored zinc oxide-rGO nanohybrids: Candidate for pathogenic microbe destruction and hazardous dye degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Preparation of indium-cadmium sulfide nanoparticles with diverse morphologies: Photocatalytic and cytotoxicity study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Ganie AS, Bano S, Khan N, Sultana S, Rehman Z, Rahman MM, Sabir S, Coulon F, Khan MZ. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. CHEMOSPHERE 2021; 275:130065. [PMID: 33652279 DOI: 10.1016/j.chemosphere.2021.130065] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/04/2023]
Abstract
A major and growing concern within society is the lack of innovative and effective solutions to mitigate the challenge of environmental pollution. Uncontrolled release of pollutants into the environment as a result of urbanisation and industrialisation is a staggering problem of global concern. Although, the eco-toxicity of nanotechnology is still an issue of debate, however, nanoremediation is a promising emerging technology to tackle environmental contamination, especially dealing with recalcitrant contaminants. Nanoremediation represents an innovative approach for safe and sustainable remediation of persistent organic compounds such as pesticides, chlorinated solvents, brominated or halogenated chemicals, perfluoroalkyl and polyfluoroalkyl substances (PFAS), and heavy metals. This comprehensive review article provides a critical outlook on the recent advances and future perspectives of nanoremediation technologies such as photocatalysis, nano-sensing etc., applied for environmental decontamination. Moreover, sustainability assessment of nanoremediation technologies was taken into consideration for tackling legacy contamination with special focus on health and environmental impacts. The review further outlines the ecological implications of nanotechnology and provides consensus recommendations on the use of nanotechnology for a better present and sustainable future.
Collapse
Affiliation(s)
- Adil Shafi Ganie
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Sayfa Bano
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Nishat Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Saima Sultana
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Zubair Rehman
- Section of Organic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohammed M Rahman
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
13
|
Green synthesis of V2O5/ZnO nanocomposite materials for efficient photocatalytic and anti-bacterial applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01923-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Photo induced mechanistic activity of GO/Zn(Cu)O nanocomposite against infectious pathogens: Potential application in wound healing. Photodiagnosis Photodyn Ther 2021; 34:102291. [PMID: 33862280 DOI: 10.1016/j.pdpdt.2021.102291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Treating infection causing microorganisms is one of the major challenges in wound healing. These may gain resistance due to the overuse of conventional antibiotics. A promising technique is antimicrobial photodynamic therapy (aPDT) used to selectively cause damage to infectious pathogenic cells via generation of reactive oxygen species (ROS). We report on biocompatable nanomaterials that can serve as potential photosensitizers for aPDT. GO/Zn(Cu)O nanocomposite was synthesized by co-precipitation method. Graphene Oxide (GO) is known for its high surface to volume ratio, excellent surface functionality and enhanced antimicrobial property. ZnO nanoparticle induces the generation of reactive oxygen species (ROS) under light irradiation and it leads to recombination of electron-hole pair. Nanocomposites of GO and Cu doped ZnO increases visible light absorption and enhances the photocatalytic property. It generates more ROS and increases the bacterial inhibition. GO/Zn(Cu)O nanocomposite was tested against Staphylococcus aureus (S. aureus), Enterococcus faecium (E. faecium), Escherichia coli (E. coli), Salmonella typhi (S. typhi), Shigella flexneri (S. flexneri) and Pseudomonas aeruginosa (P. aeruginosa) by well diffusion method, growth curve, colony count, biofilm formation under both dark and visible light condition. Reactive Oxygen Species assay (ROS), Lactate dehydrogenase leakage (LDH) assay, Protein estimation assay and membrane integrity study proves the mechanism of inhibition of bacteria. Inhibition kinetics shows the sensitivity between bacteria and GO/Zn(Cu)O nanocomposite.
Collapse
|
15
|
Zhu M, Chen H, Dai Y, Wu X, Han Z, Zhu Y. Novel n‐p‐n heterojunction of AgI/BiOI/UiO‐66 composites with boosting visible light photocatalytic activities. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Min Zhu
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Huimin Chen
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Yu Dai
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Xuanyu Wu
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Zhiguo Han
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing Taizhou University Taizhou China
| | - Yu Zhu
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing Taizhou University Taizhou China
| |
Collapse
|
16
|
Mahmoud A, Echabaane M, Omri K, Boudon J, Saviot L, Millot N, Chaabane RB. Cu-Doped ZnO Nanoparticles for Non-Enzymatic Glucose Sensing. Molecules 2021; 26:929. [PMID: 33578737 PMCID: PMC7916517 DOI: 10.3390/molecules26040929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Copper-doped zinc oxide nanoparticles (NPs) CuxZn1-xO (x = 0, 0.01, 0.02, 0.03, and 0.04) were synthesized via a sol-gel process and used as an active electrode material to fabricate a non-enzymatic electrochemical sensor for the detection of glucose. Their structure, composition, and chemical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) and Raman spectroscopies, and zeta potential measurements. The electrochemical characterization of the sensors was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Cu doping was shown to improve the electrocatalytic activity for the oxidation of glucose, which resulted from the accelerated electron transfer and greatly improved electrochemical conductivity. The experimental conditions for the detection of glucose were optimized: a linear dependence between the glucose concentration and current intensity was established in the range from 1 nM to 100 μM with a limit of detection of 0.7 nM. The proposed sensor exhibited high selectivity for glucose in the presence of various interfering species. The developed sensor was also successfully tested for the detection of glucose in human serum samples.
Collapse
Affiliation(s)
- Amira Mahmoud
- Laboratory Interfaces and Advanced Materials (LIMA), Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia; (A.M.); (R.B.C.)
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne Franche-Comté, 9 av. A. Savary, BP 47870, 21078 Dijon, France; (J.B.); (L.S.)
| | - Mosaab Echabaane
- NANOMISENE Lab., LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Technopark of Sousse, B.P. 334, Sahloul, 4034 Sousse, Tunisia;
| | - Karim Omri
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences of Gabes, University of Gabes, 6029 Gabes, Tunisia;
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne Franche-Comté, 9 av. A. Savary, BP 47870, 21078 Dijon, France; (J.B.); (L.S.)
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne Franche-Comté, 9 av. A. Savary, BP 47870, 21078 Dijon, France; (J.B.); (L.S.)
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne Franche-Comté, 9 av. A. Savary, BP 47870, 21078 Dijon, France; (J.B.); (L.S.)
| | - Rafik Ben Chaabane
- Laboratory Interfaces and Advanced Materials (LIMA), Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia; (A.M.); (R.B.C.)
| |
Collapse
|
17
|
Bajiri MA, Hezam A, Namratha K, Al-Maswari BM, BhojyaNaik HS, Byrappa K, Al-Zaqri N, Alsalme A, Alasmari R. Non-noble metallic Cu with three different roles in a Cu doped ZnO/Cu/g-C 3N 4 heterostructure for enhanced Z-scheme photocatalytic activity. NEW J CHEM 2021; 45:13499-13511. [DOI: 10.1039/d1nj01044a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Cu serves as a co-catalyst, an electron mediator, and a dopant leading to a high enhancement in the photocatalytic activity of Cu-ZnO/Cu/g-C3N4 Z-scheme photocatalyst.
Collapse
Affiliation(s)
- Mohammed Abdullah Bajiri
- Department of Studies and Research in Industrial Chemistry
- School of Chemical Sciences, Kuvempu University
- Shankaraghatta-577 451
- India
| | - Abdo Hezam
- Department of Physics
- Ibb University
- Ibb
- Yemen
| | - K. Namratha
- DOS in Earth Science
- University of Mysore
- Mysore-570006
- India
| | | | - H. S. BhojyaNaik
- Department of Studies and Research in Industrial Chemistry
- School of Chemical Sciences, Kuvempu University
- Shankaraghatta-577 451
- India
| | | | - Nabil Al-Zaqri
- Department of Chemistry, College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| | - Raghad Alasmari
- Department of Chemistry, College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| |
Collapse
|
18
|
Enesca A. Enhancing the Photocatalytic Activity of SnO 2-TiO 2 and ZnO-TiO 2 Tandem Structures Toward Indoor Air Decontamination. Front Chem 2020; 8:583270. [PMID: 33324610 PMCID: PMC7723902 DOI: 10.3389/fchem.2020.583270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
ZnO-TiO2 and SnO2-TiO2 tandem structures were developed using the doctor blade technique. It was found that by employing organic hydrophilic and hydrophobic as additives into the precursor it is possible to tailor the film density and morphology with direct consequences on the photocatalytic activity of the tandem structures. The highest photocatalytic efficiency corresponds to ZnO-TiO2 and can reach 74.04% photocatalytic efficiency toward acetaldehyde when a hydrophilic additive is used and 70.93% when a hydrophobic additive is employed. The snO2-TiO2 tandem structure presents lower photocatalytic properties (61.35 % when the hydrophilic additive is used) with a constant rate reaction of 0.07771 min-1.
Collapse
Affiliation(s)
- Alexandru Enesca
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Braşov, Romania
| |
Collapse
|
19
|
Luu TVH, Luu MD, Dao NN, Le VT, Nguyen HT, Doan VD. Immobilization of C/Ce-codoped ZnO nanoparticles on multi-walled carbon nanotubes for enhancing their photocatalytic activity. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1740728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Thi Viet Ha Luu
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Dai Luu
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Nhiem Dao
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, Danang, Vietnam
| | - Hoai Thuong Nguyen
- Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2020; 564:322-332. [DOI: 10.1016/j.jcis.2019.12.111] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
|
21
|
Reddy NR, Bharagav U, Kumari MM, Cheralathan KK, Shankar MV, Reddy KR, Saleh TA, Aminabhavi TM. Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109747. [PMID: 31704644 DOI: 10.1016/j.jenvman.2019.109747] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 05/06/2023]
Abstract
The need for clean and eco-friendly energy sources has increased enormously over the years due to adverse impacts caused by the detrimental fossil fuel energy sources on the environment. This work reports the safest and most efficient route for hydrogen generation using solar light receptive functionalized carbon nanotubes-titania quantum dots (FCNT-TQDs) as photocatalysts under the influence of solar light irradiation. Predominantly, dual capability of CNT as co-catalyst and photo-sensitizer reduced the recombination rate of charge carriers, and facilitated the efficient light harvesting. The bulk production of hydrogen via water harvesting is considered, wherein photocatalyst synthesized was tuned by the optimum addition of copper to achieve higher production rate of hydrogen up to 54.4 mmol h-1g-1, nearly 25-folds higher than that of pristine TiO2 quantum dots. Addition of copper has a crucial role in improving the rate of hydrogen generation. The ternary composite exhibited 5.4-times higher hydrogen production compared to FCNT-TQDs composite.
Collapse
Affiliation(s)
- N Ramesh Reddy
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - U Bharagav
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - M Mamatha Kumari
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India.
| | - K K Cheralathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - M V Shankar
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science &Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- The School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, B.O. Box: 346, Dhahran, 31261, Saudi Arabia
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad, 580 002, India.
| |
Collapse
|
22
|
Liu F, Che Y, Chai Q, Zhao M, Lv Y, Sun H, Wang Y, Sun J, Zhao C. Construction of rGO wrapping Cu 2O/ZnO heterostructure photocatalyst for PNP and PAM degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25286-25300. [PMID: 31256404 DOI: 10.1007/s11356-019-05814-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/20/2019] [Indexed: 05/27/2023]
Abstract
Copper and zinc composite oxides (Cu2O/ZnO) were synthesized by an impregnation-reduction-air oxidation method. A series of Cu2O/ZnO/rGO ternary composites were prepared by coupling with graphene oxide (GO) with different mass fractions in a solvothermal reaction system. The microscopic morphology, crystal structure, and optical characteristics of the photocatalysts were characterized. The degradation of p-Nitrophenol (PNP) and polyacrylamide (PAM) by photocatalytic materials under simulated solar irradiation were studied, and the degradation kinetics were also investigated. The results showed that cubic Cu2O was modified by ZnO nanorods and distributed on rGO nanosheets. The ternary Cu2O/ZnO/rGO nanocomposites have stronger simulated solar absorption ability and higher photodegradation efficiency than pure ZnO and binary Cu2O/ZnO nanocomposites. When the amount of Cu2O/ZnO/rGO-10 was 0.3 g L-1, the degradation rate of 10 mg L-1 PNP reached 98% at 90 min and 99.6% of 100 mg L-1 PAM at 30 min. The photocatalytic degradation processes of PNP and PAM all followed the pseudo-first-order kinetic model. Free radical trapping experiments showed that superoxide radicals were the main active substances to improve photocatalytic efficiency. In addition, after four recycles, the catalytic efficiency of Cu2O/ZnO/rGO-10 was still over 90%. It showed that Cu2O/ZnO/rGO-10 was a promising catalyst for wastewater treatment because of its good photostability and reusability.
Collapse
Affiliation(s)
- Fang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, People's Republic of China.
| | - Yangli Che
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Qingwen Chai
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Mengfei Zhao
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Yan Lv
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Hui Sun
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Yongqiang Wang
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, People's Republic of China.
| | - Juan Sun
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| |
Collapse
|
23
|
Bouras HD, Isik Z, Bezirhan Arikan E, Bouras N, Chergui A, Yatmaz HC, Dizge N. Photocatalytic oxidation of azo dye solutions by impregnation of ZnO on fungi. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Siong VLE, Lee KM, Juan JC, Lai CW, Tai XH, Khe CS. Removal of methylene blue dye by solvothermally reduced graphene oxide: a metal-free adsorption and photodegradation method. RSC Adv 2019; 9:37686-37695. [PMID: 35542257 PMCID: PMC9075724 DOI: 10.1039/c9ra05793e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, reduced graphene oxide (rGO) was fabricated at different reduction temperatures via an environmentally friendly solvothermal approach. The rGO formed at 160 °C clearly showed the partial restoration of the sp2 hybridization brought about by the elimination of oxygenated functionalities from the surface. Owing to the augmented surface area and the band gap reduction, rGO-160 exhibited the best adsorption (29.26%) and photocatalytic activity (32.68%) towards the removal of MB dye. The effects of catalyst loading, initial concentration of dye, light intensity, and initial pH of solution were evaluated. It was demonstrated that rGO-160 could achieve a higher adsorptive removal (87.39%) and photocatalytic degradation (98.57%) of MB dye when 60 mg of catalyst, 50 ppm of dye at pH 11, and 60 W m−2 of UV-C light source were used. The MB photodegradation activity of rGO-160 displayed no obvious decrease after five successive cycles. This study provides a potential metal-free adsorbent-cum-photocatalyst for the decontamination of dyes from wastewater. A metal-free MB dye removal process was carried out by solvothermally synthesized rGO. After optimization, near-complete dye removal was achieved via an adsorption and UV photodegradation route.![]()
Collapse
Affiliation(s)
- Valerie Ling Er Siong
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Kian Mun Lee
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Xin Hong Tai
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences
- Universiti Teknologi PETRONAS
- Malaysia
| |
Collapse
|
25
|
Xu J, Feng B, Wang Y, Qi Y, Niu J, Chen M. BiOCl Decorated NaNbO 3 Nanocubes: A Novel p-n Heterojunction Photocatalyst With Improved Activity for Ofloxacin Degradation. Front Chem 2018; 6:393. [PMID: 30333968 PMCID: PMC6175997 DOI: 10.3389/fchem.2018.00393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
BiOCl/NaNbO3 p-n heterojunction photocatalysts with significantly improved photocatalytic performance were fabricated by a facile in-situ growth method. The obtained BiOCl/NaNbO3 samples were characterized by UV-vis absorption spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), photocurrent (PC) and photoluminescence spectroscopy (PL). The photocatalytic activity of the BiOCl/NaNbO3 samples was investigated by the degradation of a typical antibiotic Ofloxacin (OFX). The experimental results showed that BiOCl/NaNbO3 composites exhibited much higher photocatalytic activity for OFX degradation compared to pure NaNbO3 and BiOCl. The degradation percent of OFX reached 90% within 60 min, and the apparent rate constant was about 8 times as that of pure NaNbO3 and BiOCl. The improved activity can be attributed to the formation of p-n junction between NaNbO3 and BiOCl. The formed p-n junction facilitated the separation of photogenerated holes and electrons, thereby enhancing photocatalytic activity. In addition, the composite photocatalyst showed satisfactory stability for the degradation of OFX. Due to the simple synthesis process, high photocatalytic activity, and the good recyclability of these composite photocatalysts, the results of this study would provide a good example for the rational design of other highly efficient heterojunction photocatalytic materials.
Collapse
Affiliation(s)
- Jingjing Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Bingbing Feng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Ying Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yadi Qi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|