1
|
Kost C, Scheffer U, Kalden E, Göbel MW. Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols. ChemistryOpen 2024:e202400157. [PMID: 39460429 DOI: 10.1002/open.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 10/28/2024] Open
Abstract
In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pKa of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.
Collapse
Affiliation(s)
- Catharina Kost
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Elisabeth Kalden
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Michael Wilhelm Göbel
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Zhang Y, Han H, Wei Z, Dikarev EV. Trickier than It Looks: Isomerization between Five- and Six-Coordinated Zinc in Heterometallic Li 2Zn 2 Molecule. Inorg Chem 2024; 63:12426-12432. [PMID: 38905706 PMCID: PMC11234357 DOI: 10.1021/acs.inorgchem.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
This report describes the synthesis and characterization of two heterobimetallic Li-Zn coordination isomers [Li2Zn2(tbaoac)6] (tbaoac = tert-butyl acetoacetato) that have been isolated separately by the same stoichiometric reaction run in different organic solvents. The 6-coordinated zinc isomer (6-Zn) was synthesized in acetone with high yield, while the 5-coordinated one (5-Zn) was readily obtained from ethanol. The 5-Zn isomer has a low solubility in organic solvents such as alkanes and haloalkanes, while its 6-Zn counterpart exhibits a good solubility in almost all common solvents. Two isomeric molecules feature similar centrosymmetric tetranuclear cyclic assemblies, which are different in their arrangement of tbaoac ligands. While all ligands act as μ2-type in the structure of 5-Zn, the two tbaoac groups chelating Li appear as μ3-type in 6-Zn, thus providing an additional coordination for Zn ions. However, the real structural transformation between these isomers was shown to be more complex than simply making or breaking a couple of Zn-O bonds. X-ray single-crystal structure analysis, powder X-ray diffraction, multinuclear NMR, DART mass spectrometry, ICP-OES analysis, and TGA have been employed for the characterization of the isomers. The combination of powder X-ray diffraction and 1H NMR investigation revealed that 6-Zn isomer can be quantitatively transformed to 5-Zn in ethanol, while the reverse conversion instantly takes place in acetone.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Haixiang Han
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zheng Wei
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Evgeny V Dikarev
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| |
Collapse
|
3
|
Mamta, Chaudhary A. Novel tetraaza macrocyclic Schiff base complexes of bivalent zinc: microwave-assisted green synthesis, spectroscopic characterization, density functional theory calculations, molecular docking studies, in vitro antimicrobial and anticancer activities. Biometals 2024:10.1007/s10534-024-00616-y. [PMID: 38922505 DOI: 10.1007/s10534-024-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
In the present manuscript, novel macrocyclic Schiff base complexes [Zn(N4MacL1)Cl2-Zn(N4MacL3)Cl2] were synthesized by the reaction of ZnCl2 and macrocyclic ligands (N4MacL1-N4MacL3) derived from diketone and diamines under microwave irradiation method and conventional method. The structures of the obtained complexes were identified by various spectrometric methods such as Fourier transformation infra-red (FT-IR), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), powder X-ray diffraction, molar conductivity, and UV-vis. The structures of the synthesized compounds were optimized by using the def2-TZV/J and def2-SVP/J Coulomb fitting basis sets at B3LYP level in density functional theory (DFT) calculations. The macrocyclic Schiff base complexes exhibited higher activities against Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus), Gram-negative bacteria (Escherichia coli and Xanthomonas campestris), and fungal strains (Fusarium oxysporum and Candida albicans) in comparison to macrocyclic Schiff base ligands. Furthermore, the newly synthesized macrocyclic compounds were assessed for their anticancer activity against three cell lines: A549 (human alveolar adenocarcinoma epithelial cell line), HT-29 (human colorectal adenocarcinoma cell line), and MCF-7 (human breast adenocarcinoma cell line) using the MTT assay. The obtained results showed that the macrocyclic complex [Zn(N4MacL3)Cl2] displayed the highest cytotoxic activity (2.23 ± 0.25 µM, 6.53 ± 0.28 µM, and 7.40 ± 0.45 µM for A549, HT-29, and MCF-7 cancer cell lines, respectively). Additionally, molecular docking investigations were conducted to elucidate potential molecular interactions between the synthesized macrocyclic compounds and target proteins. The results revealed a consistent agreement between the docking calculations and the experimental data.
Collapse
Affiliation(s)
- Mamta
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashu Chaudhary
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
4
|
Paderni D, Macedi E, Giacomazzo GE, Formica M, Giorgi L, Valtancoli B, Rossi P, Paoli P, Conti L, Fusi V, Giorgi C. A new biphenol-dipicolylamine based ligand and its dinuclear Zn 2+ complex as fluorescent sensors for ibuprofen and ketoprofen in aqueous solution. Dalton Trans 2024; 53:9495-9509. [PMID: 38767612 DOI: 10.1039/d4dt00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this work, the study of the new ligand 3,3'-bis[N,N-bis(pyridine-2-ylmethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) is reported, where a central 2,2'-biphenol (BPH) fluorophore was functionalized at 3,3'-positions with two dipicolylamine (DPA) side arms as receptor units. Following the synthesis and full chemical-physical characterization, the acid-base and Zn2+-coordination abilities of L were investigated through a combination of potentiometric, UV-Vis, fluorescence, NMR, XRD and DFT measurements. The optical properties of the ligand turned out to be strongly dependent on the pH, being straightforwardly associated with the protonation state of the BPH moiety, whereas its peculiar design allowed to form stable mono and dinuclear Zn2+ complexes. In the latter species, the presence of two Zn2+ ions coordinatively unsaturated and placed at close distance to each other, prompted us to test their usefulness as metallo-receptors for two environmental pollutants of great relevance, ibuprofen and ketoprofen. Potentiometric and fluorescence investigations evidenced that these important non-steroidal anti-inflammatory drugs (NSAIDs) are effectively coordinated by the metallo-receptors and, of relevance, both the stability and the fluorescence properties of the resulting ternary adducts are markedly affected by the different chemical architectures of the two substrates. This study aims at highlighting the promising perspectives arising from the use of polyamino phenolic ligands as chemosensors for H+/Zn2+ and other additional anionic targets in their metal-complexed forms.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
5
|
Serafim LF, Jayasinghe-Arachchige VM, Wang L, Rathee P, Yang J, Moorkkannur N S, Prabhakar R. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chem Commun (Camb) 2023. [PMID: 37366367 DOI: 10.1039/d3cc01380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The selective hydrolysis of the extremely stable phosphoester, peptide and ester bonds of molecules by bio-inspired metal-based catalysts (metallohydrolases) is required in a wide range of biological, biotechnological and industrial applications. Despite the impressive advances made in the field, the ultimate goal of designing efficient enzyme mimics for these reactions is still elusive. Its realization will require a deeper understanding of the diverse chemical factors that influence the activities of both natural and synthetic catalysts. They include catalyst-substrate complexation, non-covalent interactions and the electronic nature of the metal ion, ligand environment and nucleophile. Based on our computational studies, their roles are discussed for several mono- and binuclear metallohydrolases and their synthetic analogues. Hydrolysis by natural metallohydrolases is found to be promoted by a ligand environment with low basicity, a metal bound water and a heterobinuclear metal center (in binuclear enzymes). Additionally, peptide and phosphoester hydrolysis is dominated by two competing effects, i.e. nucleophilicity and Lewis acid activation, respectively. In synthetic analogues, hydrolysis is facilitated by the inclusion of a second metal center, hydrophobic effects, a biological metal (Zn, Cu and Co) and a terminal hydroxyl nucleophile. Due to the absence of the protein environment, hydrolysis by these small molecules is exclusively influenced by nucleophile activation. The results gleaned from these studies will enhance the understanding of fundamental principles of multiple hydrolytic reactions. They will also advance the development of computational methods as a predictive tool to design more efficient catalysts for hydrolysis, Diels-Alder reaction, Michael addition, epoxide opening and aldol condensation.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiawen Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
6
|
Kumar P, Tomar S, Kumar K, Kumar S. Transition metal complexes as self-activating chemical nucleases: proficient DNA cleavage without any exogenous redox agents. Dalton Trans 2023; 52:6961-6977. [PMID: 37128993 DOI: 10.1039/d3dt00368j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical nucleases have found potential applications in the research fields of chemistry, biotechnology and medicine. A variety of metal complexes have been explored as good to outstanding therapeutic agents for DNA cleavage activity most likely via hydrolytic, oxidative or photoinduced cleavage pathways. However, most of these DNA cleaving agents lack their utility in in vivo applications due to their dependence on exogenous oxidants or reductants to achieve successful DNA damage. In view of addressing these issues, the development of metal complexes/organic molecules serving as self-activating chemical nucleases has received growing attention from researchers. In only the last decade, this field has dramatically expanded for the usage of chemical nucleases as therapeutic agents for DNA damage. The present study provides an overview of the opportunities and challenges in the design and development of self-activating chemical nucleases as improved DNA therapeutic candidates in the absence of an external redox agent. The reports on DNA nuclease activity via self-activation, especially with copper, zinc and iron complexes, and their mechanistic investigation have been discussed in this review article.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India.
| | - Sunil Tomar
- Department of Zoology, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Krishan Kumar
- Department of Chemistry, Motilal Nehru College, South Campus University of Delhi, New Delhi, India
| | - Sushil Kumar
- Department of Chemistry, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
7
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
8
|
Costa LMO, Reis IS, Fernandes C, Marques MM, Resende JALC, Krenske EH, Schenk G, Gahan LR, Horn A. Synthesis, characterization and computational investigation of the phosphatase activity of a dinuclear Zinc(II) complex containing a new heptadentate asymmetric ligand. J Inorg Biochem 2023; 239:112064. [PMID: 36410306 DOI: 10.1016/j.jinorgbio.2022.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
We report the synthesis of a new asymmetric heptadentate ligand based on the 1,3-diaminopropan-2-ol backbone. The ligand 3-[[3-(bis-pyridin-2-ylmethyl-amino)-2-hydroxy-propyl]-(2-carbamoyl-ethyl)-amino]-propionamide (HL1) contains two amide and two pyridine groups attached to the 1,3-diaminopropan-2-ol core. Reaction between HL1 and Zn(ClO4)2.6H2O resulted in the formation of the dinuclear [Zn2(L1)(μ-OAc)](ClO4)2 complex, characterized by single crystal X-ray diffraction, 1H, 13C and 15N NMR, ESI-(+)-MS, CHN elemental analysis as well as infrared spectroscopy. The phosphatase activity of the complex was studied in the pH range 6-11 employing pyridinium bis(2,4-dinitrophenyl)phosphate (py(BDNPP)) as substrate. The complex exhibited activity dependent on the pH, presenting an asymmetric bell shape profile with the highest activity at pH 9; at high pH ligand exchange is rate-limiting. The hydrolysis of BDNPP- at pH 9 displayed behavior characteristic of Michaelis-Menten kinetics, with kcat = 5.06 × 10-3 min-1 and Km = 5.7 ± 1.0 mM. DFT calculations map out plausible reaction pathways and identify a terminal, Zn(II)-bound hydroxide as likely nucleophile.
Collapse
Affiliation(s)
- Luel M O Costa
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Iago S Reis
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Marcelo M Marques
- Colégio Universitário Geraldo Reis, Universidade Federal Fluminense, Niterói, RJ 24210-200, Brazil
| | - Jackson A L C Resende
- Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia, 4072; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
9
|
Luiz E, Farias G, Bortoluzzi AJ, Neves A, de Melo Mattos LM, Pereira MD, Xavier FR, Peralta RA. Hydrolytic activity of new bioinspired Mn IIIMn II and Fe IIIMn II complexes as mimetics of PAPs: Biological and environmental interest. J Inorg Biochem 2022; 236:111965. [PMID: 35988388 DOI: 10.1016/j.jinorgbio.2022.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Coordination compounds that mimic Purple Acid Phosphatases (PAPs) have drawn attention in the bioinorganic field due to their capacity to cleave phosphodiester bonds. However, their catalytic activity upon phosphate triesters is still unexplored. Thus, we report the synthesis and characterization of two binuclear complexes, [MnIIMnIII(L1)(OAc)2]BF4 (1) and [MnIIFeIII(L1)(OAc)2]BF4 (2) (H2L1 = 2-[N,N-bis-(2- pyridilmethyl)aminomethyl]-4-methyl-6-[N-(2-hydroxy-3-formyl-5-methylbenzyl)-N-(2-pyridylmethyl)aminomethyl]phenol), their hydrolytic activity and antioxidant potential. The complexes were fully characterized, including the X-Ray diffraction (XRD) of 1. Density functional theory (DFT) calculations were performed to better understand their electronic and structural properties and phosphate conjugates. The catalytic activity was analyzed for two model substrates, a diester (BDNPP) and a triester phosphate (DEDNPP). The results suggest enhancement of the hydrolysis reaction by 170 to 1500 times, depending on the substrate and complex. It was possible to accompany the catalytic reaction of DEDNPP hydrolysis by phosphorus nuclear magnetic resonance (31P NMR), showing that both 1 and 2 are efficient catalysts. Moreover, we also addressed that 1 and 2 present a relevant antioxidant potential, protecting the yeast Saccharomyces cerevisiae, used as eukaryotic model of study, against the exposure of cells to acute oxidative stress.
Collapse
Affiliation(s)
- Edinara Luiz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Giliandro Farias
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Larissa Maura de Melo Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Marcos Dias Pereira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Fernando R Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina, Joinville, Santa Catarina 89219-710, Brazil.
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
10
|
Agunwamba JC, Amu AM, Nwonu DC. An efficient biosorbent for the removal of arsenic from a typical urban-generated wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:911. [PMID: 36253592 DOI: 10.1007/s10661-022-10631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The arousal of environmental concerns due to spike in environmental degradation has necessitated proper waste management and disposal. Arsenic, a potentially toxic element in cassava wastewater, requires treatment prior to the wastewater disposal to minimize environmental pollution and associated health implications. The present study thus addressed the treatment of As5+ heavy metal in cassava wastewater using an efficient biosorbent from chemically pretreated unshelled Moringa oleifera seeds. The effect of various factors influencing the biosorption process for arsenate removal was studied including pH, contact time, biosorbent dosage, and biosorbent pretreatment concentration. The results of Fourier transform infrared spectroscopy clearly suggested that additional functional groups attributed to esters were formed in the pretreated biosorbent, which is responsible for improvement in biosorption. It was found that contact time, biosorbent dosage, and biosorbent pretreatment concentration had statistically significant effect (p values < 0.05) on arsenate removal. A maximum percentage removal of 99.9% was achieved in the synthetic solution at pH 4.0, contact time of 30 min, and dosage of 2 g for biosorbent pretreated with 1 M of chemical solution. Furthermore, through isotherm and kinetics studies, it was discovered that the biosorption process for untreated biosorbent is by ion exchange, while that for treated biosorbents indicated a multifarious adsorption mechanism. Moreover, the biosorption process was exothermic and spontaneous. Also, it is noted that the sorption capability of the biosorbent increases with pretreatment concentration. A statistical model has been developed with prediction R2 of 0.898, which incorporates the effect of treatment concentration on the percentage removal of As5+ from cassava wastewater.
Collapse
Affiliation(s)
| | - Anayo Matthew Amu
- Civil Engineering Department, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Donald Chimobi Nwonu
- Civil Engineering Department, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
11
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
12
|
Mersal GAM, Hessien MM, Taleb MFA, Al-Juaid SS, Ibrahim MM. Solid–Liquid Phase Structural Studies of Bis(2-Picolyl)Amine-Based Zinc(II) Complexes as Functional Hydrolase Models: The Detoxification of Fenitrothion. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Foley W, Arman H, Musie GT. Homodinuclear copper(II) and zinc(II) complexes of a carboxylate-rich ligand as synthetic mimics of phosphoester hydrolase in aqueous solutions. J Inorg Biochem 2021; 225:111589. [PMID: 34530333 DOI: 10.1016/j.jinorgbio.2021.111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/14/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
The synthesis, characterization and catalytic activities of two homodinuclear Cu(II) and Zn(II) complexes of a carboxylate-rich ligand, N,N'-Bis[2-carboxybenzomethyl]-N,N' -Bis[carboxymethyl]-1,3-diaminopropan-2-ol (H5ccdp) ligand towards the hydrolysis of (p-nitrophenyl phosphate) (PNPP) and bis(p-nitrophenyl) phosphate (BNPP) substrates in aqueous systems are described. Kinetic investigations were carried out using UV-Vis spectrophotometric techniques at 25 °C and 37 °C and different pH (7-10) conditions. The kinetic studies revealed that the turnover rate (kcat) values among the PNPP hydrolysis systems, the highest and the lowest kcat values were displayed by [Cu2(ccdp)(μ-OAc)]2- at 2.34 × 10-6 s-1 (pH 8 and 37 °C) and 2.13 × 10-8 s-1 (pH 8 and 25 °C), respectively. However, similar comparisons among the BNPP hydrolysis revealed that highest and the lowest kcat values were displayed by [Zn2(ccdp)(μ-OAc)]2- at 4.64 × 10-8 s-1 (pH 9 and 37 °C) and 2.38 × 10-9 (pH 9 and 25 °C). Significantly enough, the catalyst-substrate adduct species containing a metal bound PNPP and BNPP have been detected by ESI-MS techniques. Additionally, a PNPP-bound copper complex has been isolated and crystalized using single crystal X-ray diffraction technique. Based on the structural and activity information obtained in this study, reaction mechanisms for the hydrolysis of PNPP have been proposed.
Collapse
Affiliation(s)
- William Foley
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hadi Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Ghezai T Musie
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
14
|
Oxidative cyclization and synthesis of benzoxazole derivatives and hydrolytic phosphatase activity studies on dinuclear diphenoxo-bridged zinc(II)complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Gomes MAGB, Fernandes C, Gahan LR, Schenk G, Horn A. Recent Advances in Heterogeneous Catalytic Systems Containing Metal Ions for Phosphate Ester Hydrolysis. Chemistry 2021; 27:877-887. [PMID: 32659052 DOI: 10.1002/chem.202002333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Organophosphates are a class of organic compounds that are important for living organisms, forming the building blocks for DNA, RNA, and some essential cofactors. Furthermore, non-natural organophosphates are widely used in industrial applications, including as pesticides; in laundry detergents; and, unfortunately, as chemical weapons agents. In some cases, the natural degradation of organophosphates can take thousands of years; this longevity creates problems associated with handling and the storage of waste generated by such phosphate esters, in particular. Efforts to develop new catalysts for the cleavage of phosphate esters have progressed in recent decades, mainly in the area of homogeneous catalysis. In contrast, the development of heterogeneous catalysts for the hydrolysis of organophosphates has not been as prominent. Herein, examples of heterogeneous systems are described and the importance of the development of heterogeneous catalysts applicable to organophosphate hydrolysis is highlighted, shedding light on recent advances related to different solid matrices that have been employed.
Collapse
Affiliation(s)
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
16
|
Castells-Gil J, M. Padial N, Almora-Barrios N, Gil-San-Millán R, Romero-Ángel M, Torres V, da Silva I, Vieira BC, Waerenborgh JC, Jagiello J, Navarro JA, Tatay S, Martí-Gastaldo C. Heterometallic Titanium-Organic Frameworks as Dual-Metal Catalysts for Synergistic Non-buffered Hydrolysis of Nerve Agent Simulants. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Chaves CC, Farias G, Formagio MD, Neves A, Peralta RM, Mikcha JM, de Souza B, Peralta RA. Three new dinuclear nickel(II) complexes with amine pendant-armed ligands: Characterization, DFT study, antibacterial and hydrolase-like activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Kumar Pal C, Mahato S, Joshi M, Paul S, Roy Choudhury A, Biswas B. Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Maranha FG, dos Santos Silva GA, Bortoluzzi AJ, Nordlander E, Peralta RA, Neves A. A new heteropentanuclear complex containing the [Fe2IIIZn3II(μ-OH)3] structural motif as a model for purple acid phosphatases. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Diez-Castellnou M, Salassa G, Mancin F, Scrimin P. The Zn(II)-1,4,7-Trimethyl-1,4,7-Triazacyclononane Complex: A Monometallic Catalyst Active in Two Protonation States. Front Chem 2019; 7:469. [PMID: 31334218 PMCID: PMC6616306 DOI: 10.3389/fchem.2019.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
In this paper, the unusual reactivity of the complex Zn(II)-1,4,7-trimethyl-1, 4,7-triazacyclononane (2) in the transesterification of the RNA-model substrate, HPNP (3), is reported. The dependence of the reactivity (k2) with pH does not follow the characteristic bell-shape profile typical of complexes with penta-coordinated metal centers. By the contrary, two reactive species, featuring different deprotonation states, are present, with the tri-aqua complex being more reactive than the mono-hydroxy-diaqua one. Apparently, such a difference arises from the total complex charge which plays an important role in the stability of the transition state/s of the reactions. Relevant insight on the reaction mechanism were hence obtained.
Collapse
Affiliation(s)
| | - Giovanni Salassa
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Paolo Scrimin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| |
Collapse
|
21
|
Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 2019; 24:675-691. [DOI: 10.1007/s00775-019-01680-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
|
22
|
Abstract
Abstract
The bio-relevant metals (and derived compounds) of the Periodic Table of the Elements (PTE) are in the focus. The bulk elements sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) from the s-block, which are essential for all kingdoms of life, and some of their bio-activities are discussed. The trace elements of the d-block of the PTE as far as they are essential for humans (Mn, Fe, Co, Cu, Zn, Mo) are emphasized, but V, Ni, Cd, and W, which are essential only for some forms of life, are also considered. Chromium is no longer classified as being essential. From the p-block metals only the metalloid (half-metal) selenium (Se) is essential for all forms of life. Two other metalloids, silicon and arsenic, are briefly mentioned, but they have not been proven as being essential for humans. All metals of the PTE and a plethora of their compounds are used in industry and many of them are highly toxic, like lead (Pb), which is discussed as a prime example. Several metals of the PTE, that is, their ions and complexes, are employed in medicine and we discuss the role of lithium, gallium, strontium, technetium, silver, gadolinium (the only f-block element), platinum, and gold.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51 , CH-4056 Basel , Switzerland
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51 , CH-4056 Basel , Switzerland
| |
Collapse
|