1
|
Thomson C, Sani MA, White KF, Abrahams BF, White JM. Host-Guest Interactions Facilitated by Chalcogen Bonding within Selenadiazole Functionalised Porphyrin Nanotubes. Chemistry 2025; 31:e202403248. [PMID: 39513595 DOI: 10.1002/chem.202403248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The structural rigidity of tetrakis(4-pyridyl)porphyrin (TPyP) has been utilised to prepare a robust novel porous coordination polymer of composition Cd2(TPyP)(sez)2 (TPyP=5,10,15,20-tetra(4-pyridyl)porphyrin, sez=1,2,5-benzoselenadiazole-5-carboxylate). The coordination polymer may be described as a hexagonal porphyrin nanotube (PNT) and has the potential to bind guest molecules through chalcogen bonding. Single crystal X-ray diffraction (SCXRD) data indicate an internal pore diameter ~9 Å which represents ~35 % of the crystal volume. Immersion of the PNTs in solvents such as DMSO and CS2 result in the incorporation of these molecules within the nanotubes with chalcogen bonding between host and guest. The crystallographic guest-inclusion investigations are complemented by solid-state 77Se, 13C, 113Cd and 2H NMR studies which provide insights into dynamic behaviour. The porosity of the crystals was further explored using gas adsorption experiments, indicating the reversible uptake of CO2, CH4, H2 and N2. Structure-function relationships are clearly established from complementary crystallographic, NMR and adsorption investigations.
Collapse
Affiliation(s)
- Catriona Thomson
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Brendan F Abrahams
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
2
|
Ma T, Jia Y, Shi L, Xu X, Zheng K, Fu Z, Wang H, Lu Y. A novel "ON-OFF-ON" colorimetric and fluorescence dual-signal sensing APAP based on TSPP-Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124759. [PMID: 38955068 DOI: 10.1016/j.saa.2024.124759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Acetaminophen, also known as paracetamol (APAP), is a commonly used over-the-counter medication that is often used to treat headaches, toothaches, joint pain, muscle pain, and to lower body temperature. However, overdose can lead to liver damage, gastrointestinal distress, kidney damage, and cardiovascular disease. Therefore, it is very important to establish a method to quickly detect APAP. A novel "ON-OFF-ON" colorimetric and fluorescence dual-signal sensing system was constructed for the quantitative detection of APAP based on 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrin (TSPP) dual-signal probe. The absorbance and fluorescence intensity of TSPP respectively were quenched when Fe3+ was introduced into TSPP solution. At this point, the color of the corresponding solution changed from red to green. The absorbance and fluorescence intensity of TSPP respectively were restored when APAP was added to the TSPP-Fe3+ system. At this time, the color of the solution changed from green to colorless. Therefore, an "ON-OFF-ON" dual-signal sensing study of APAP were constructed using TSPP as the colorimetric and fluorescent probe. The proposed colorimetric sensing system had a wide linear range in the 13.12 mM ∼ 23.20 mM with 0.11 mM of limit of detection (LOD, S/N = 3). And the proposed fluorescence sensing system had a wide linear range in the 3.45 mM ∼ 12.50 mM and 41.67 mM ∼ 65.22 mM with 0.83 mM of limit of detection (LOD, S/N = 3). The dual-signal sensing system were applied to the APAP detection of real samples.
Collapse
Affiliation(s)
- Tianfeng Ma
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China
| | - Yanyan Jia
- QingHai Higher Vocational and Technical Institute, China
| | - Lin Shi
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China
| | - Xiaohua Xu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China
| | - Kun Zheng
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China
| | - Zijia Fu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China
| | - Huan Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China.
| | - Yongchang Lu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China.
| |
Collapse
|
3
|
Shee NK, Kim HJ. Porphyrin-Based Nanomaterials for the Photocatalytic Remediation of Wastewater: Recent Advances and Perspectives. Molecules 2024; 29:611. [PMID: 38338355 PMCID: PMC10856464 DOI: 10.3390/molecules29030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Self-organized, well-defined porphyrin-based nanostructures with controllable sizes and morphologies are in high demand for the photodegradation of hazardous contaminants under sunlight. From this perspective, this review summarizes the development progress in the fabrication of porphyrin-based nanostructures by changing their synthetic strategies and designs. Porphyrin-based nanostructures can be fabricated using several methods, including ionic self-assembly, metal-ligand coordination, reprecipitation, and surfactant-assisted methods. The synthetic utility of porphyrins permits the organization of porphyrin building blocks into nanostructures, which can remarkably improve their light-harvesting properties and photostability. The tunable functionalization and distinctive structures of porphyrin nanomaterials trigger the junction of the charge-transfer mechanism and facilitate the photodegradation of pollutant dyes. Finally, porphyrin nanomaterials or porphyrin/metal nanohybrids are explored to amplify their photocatalytic efficiency.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
4
|
Pal S, Mahamiya V, Ray P, Sarkar A, Sultana F, Adhikary B, Chakraborty B, Show B. β-Bi 2O 3-Bi 2WO 6 Nanocomposite Ornated with meso-Tetraphenylporphyrin: Interfacial Electrochemistry and Photoresponsive Detection of Nanomolar Hexavalent Cr. Inorg Chem 2023; 62:21201-21223. [PMID: 38078695 DOI: 10.1021/acs.inorgchem.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Hexavalent chromium exposure via inhalation, ingestion, or both has been proven to adversely affect internal organs, induce toxic effects, cause allergies, and contribute to the development of cancer. It requires a substantial and challenging effort to detect several heavy metal ions conveniently, sensitively, and reliably by using materials that are easy to synthesize and have a high yield. The impact of light on the electrocatalytic oxidation/reduction process proves an environmentally friendly methodology with numerous applications in pollution control. The extensive use of photoactive materials in photoelectrochemical (PEC) sensors necessitates the development of stable and highly effective photoactive materials. Hence, the solvothermal synthesis of the organic-inorganic hybrid nanocomposite β-Bi2O3-Bi2WO6/H2TPP with varying weight percentages of meso-tetraphenylporphyrin (H2TPP) resulted in a selective electrode for electrocatalytic and photoelectrocatalytic reduction of Cr6+ on fluorine-doped tin oxide (FTO) by an adsorption-reduction mechanism. H2TPP increases the active site density and provides an effective surface area for efficient adsorption by providing both pyridinic- and pyrrolic-N atoms to β-Bi2O3-Bi2WO6/H2TPP. H2TPP could effectively adsorb Cr6+ in the β-Bi2O3-Bi2WO6/H2TPP composite system through electrostatic interaction, and the adsorbed Cr6+ ions were reduced to trivalent chromium Cr3+, resulting in promising Cr6+ sensing. The projected density of states and Bader charge calculations result in the electrostatic attraction among the N-2p orbital of H2TPP and the 3d and 4s orbitals of the Cr atom, resulting in the adsorption of the hexavalent Cr atom onto the active center of H2TPP. Moreover, the addition of H2TPP results in the development of a mesoporous surface that offers strong electrical conductivity, a substantial surface area, improved charge-mass transport, intimate contact between the electrolyte and catalyst, an extended fluorescence lifetime, and increased stability. The role of pH values was thoroughly investigated. All electrochemical and photoelectrochemical studies were carried out on 5 wt % H2TPP-ornated β-Bi2O3-Bi2WO6. Nanocomposite β-Bi2O3-Bi2WO6/5 wt % H2TPP demonstrated reliable cyclic stability, reproducibility, good sensitivity (8.005 μA mM cm-2), and a low limit of detection (LOD) (8.0 nM) toward photoelectrocatalytic reduction of Cr6+. The interference study in the presence of a few inorganic entities exhibited excellent selectivity. This tale amplification approach for developing a β-Bi2O3-Bi2WO6/5 wt % H2TPP nanocomposite system suggests a deeper understanding of the application of photoelectrocatalytic reduction of Cr6+ in environmental remediation with real samples under light irradiation.
Collapse
Affiliation(s)
- Sunanda Pal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Vikram Mahamiya
- National Institute for Materials Science, Namiki1-1, Tsukuba, Ibaraki 305-0044, Japan
- Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore 641 021, Tamil Nadu, India
| | - Purbali Ray
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhimanyu Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | | |
Collapse
|
5
|
Shee NK, Kim HJ. Sn(IV)-Porphyrin-Based Nanostructures Featuring Pd(II)-Mediated Supramolecular Arrays and Their Photocatalytic Degradation of Acid Orange 7 Dye. Int J Mol Sci 2022; 23:13702. [PMID: 36430177 PMCID: PMC9696627 DOI: 10.3390/ijms232213702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to 3D depending on the axial ligation of Sn(IV)-porphyrin units. A discrete 2D tetrameric supramolecule (1) was constructed by coordination of {(trans-dihydroxo)[5,10-bis(4-pyridyl)-15,20-bis(phenyl) porphyrinato]}tin(IV) (SnP1) with trans-PdCl2 units. In contrast, the coordination between the {(trans-diisonicotinato)[5,10-bis(4-pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(IV) (SnP2) and trans-PdCl2 units formed a divergent 3D array (2). Axial ligation of the Sn(IV)-porphyrin building blocks not only alters the supramolecular arrays but also significantly modifies the nanostructures, including porosity, surface area, stability, and morphology. These structural changes consequently affected the photocatalytic degradation efficiency under visible-light irradiation towards acid orange 7 (AO) dye in an aqueous solution. The degradation efficiency of the AO dye in the aqueous solution was observed to be between 86% to 91% within 90 min by these photocatalysts.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
6
|
Pal S, Sarkar A, Satra J, Mondal P, Ray P, Srivastava DN, Adhikary B, Show B. Tetraphenylporphyrin Decorated Bi 2MoO 6 Nanocomposite: Its Twin Affinity of Oxygen Reduction Reaction and Electrochemical Detection of 4-Nitrophenol. Inorg Chem 2022; 61:17402-17418. [DOI: 10.1021/acs.inorgchem.2c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sunanda Pal
- Department of Chemistry, Jadavpur University, Kolkata700032, India
| | - Abhimanyu Sarkar
- Department of Chemistry, Jadavpur University, Kolkata700032, India
| | - Jit Satra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah711 103, West Bengal, India
| | - Papri Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah711 103, West Bengal, India
| | - Purbali Ray
- Department of Chemistry, Jadavpur University, Kolkata700032, India
| | - Divesh N. Srivastava
- Department of Analytical Science, Central Salt and Marine Chemicals Research Institute, Bhavnagar364002, Gujarat, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah711 103, West Bengal, India
| | | |
Collapse
|
7
|
Kohn EM, Shirley DJ, Hinds NM, Fry HC, Caputo GA. Peptide‐assisted
supramolecular polymerization of the anionic porphyrin
meso‐tetra
(
4‐sulfonatophenyl
)porphine. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eric M. Kohn
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
- Bantivoglio Honors College Rowan University Glassboro New Jersey USA
- Department of Chemistry University of Wisconsin Madison Wisconsin USA
| | - David J. Shirley
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Nicole M. Hinds
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - H. Christopher Fry
- Argonne National Laboratory Center for Nanoscale Materials Lemont Illinois USA
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| |
Collapse
|
8
|
Shee N, Kim HJ. Three Isomeric Zn(II)-Sn(IV)-Zn(II) Porphyrin-Triad-Based Supramolecular Nanoarchitectures for the Morphology-Dependent Photocatalytic Degradation of Methyl Orange. ACS OMEGA 2022; 7:9775-9784. [PMID: 35350320 PMCID: PMC8945165 DOI: 10.1021/acsomega.2c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Three isomeric Zn(II)-Sn(IV)-Zn(II) porphyrin-based triads (T2, T3, and T4) were synthesized by the reaction of common Zn(II) porphyrins (ZnL) with different Sn(IV) porphyrins (SnP n ). The Sn(IV) porphyrin precursors differ with respect to the position of the pyridyl-N atoms. All compounds were characterized by 1H NMR, UV-vis, fluorescence spectroscopy, electrospray ionization-mass spectrometry, and field-emission scanning electron microscopy measurements. In these structures, the intramolecular cooperative metal-ligand coordination of the 3-pyridyl nitrogen in SnP 3 with axial ZnL and the π-π interactions between the adjacent porphyrin triad are the determining factors affecting the nanostructures of T3. Owing to the geometrical constraints of the SnP 2 center, this type of interaction is not possible for T2. Therefore, only the π-π interactions affect the self-assembly process. In the case of SnP 4 , intermolecular coordinative interactions and then π-π interactions are responsible for the nanostructure of T4. The morphology-dependent photocatalytic degradation of methyl orange (MO) dye in aqueous solution under visible light irradiation was observed for these photocatalysts, and the degradation ratio of MO varied from 76 to 94% within 100 min. Nanorod-shaped T3 exhibited higher performance compared to nanosphere T2 and nanoflake T4.
Collapse
Affiliation(s)
- Nirmal
Kumar Shee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Joon Kim
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
9
|
Zhao P, Huang Y, Chen J, Shao S, Miao H, Xia J, Jia C, Hua M. Preparation of meso-tetraphenyl porphyrin modified defect-rich BiOCl with enhanced visible-light photocatalytic activity for antibiotic degradation and mechanism insight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2020. [DOI: 10.1016/j.jpap.2020.100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|