1
|
Singh G, Panda S, Sapan S, Singh J, Chandewar PR, Biradar AV, Shee D, Bordoloi A. Polyoxometalate-HKUST-1 composite derived nanostructured Na-Cu-Mo 2C catalyst for efficient reverse water gas shift reaction. NANOSCALE 2024; 16:14066-14080. [PMID: 38995159 DOI: 10.1039/d4nr01185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Transforming CO2 to CO via reverse water-gas shift (RWGS) reaction is widely regarded as a promising technique for improving the efficiency and economics of CO2 utilization processes. Moreover, it is also considered as a pathway towards e-fuels. Cu-oxide catalysts are widely explored for low-temperature RWGS reactions; nevertheless, they tend to deactivate significantly under applied reaction conditions due to the agglomeration of copper particles at elevated temperatures. Herein, we have synthesized homogeneously distributed Cu metallic nanoparticles supported on Mo2C for the RWGS reaction by a unique approach of in situ carburization of metal-organic frameworks (MOFs) using a Cu-based MOF i.e. HKUST-1 encapsulating molybdenum-based polyoxometalates. The newly derived Na-Cu-Mo2C nanocomposite catalyst system exhibits excellent catalytic performance with a CO production rate of 3230.0 mmol gcat-1 h-1 with 100% CO selectivity. Even after 250 h of a stability test, the catalyst remained active with more than 80% of its initial activity.
Collapse
Affiliation(s)
- Gaje Singh
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Satyajit Panda
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Siddharth Sapan
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | - Jogender Singh
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | | | - Ankush V Biradar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Debaprasad Shee
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502284, India
| | - Ankur Bordoloi
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Prabhakar Vattikuti SV, Shim J, Rosaiah P, Mauger A, Julien CM. Recent Advances and Strategies in MXene-Based Electrodes for Supercapacitors: Applications, Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:62. [PMID: 38202517 PMCID: PMC10780966 DOI: 10.3390/nano14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
With the growing demand for technologies to sustain high energy consumption, supercapacitors are gaining prominence as efficient energy storage solutions beyond conventional batteries. MXene-based electrodes have gained recognition as a promising material for supercapacitor applications because of their superior electrical conductivity, extensive surface area, and chemical stability. This review provides a comprehensive analysis of the recent progress and strategies in the development of MXene-based electrodes for supercapacitors. It covers various synthesis methods, characterization techniques, and performance parameters of these electrodes. The review also highlights the current challenges and limitations, including scalability and stability issues, and suggests potential solutions. The future outlooks and directions for further research in this field are also discussed, including the creation of new synthesis methods and the exploration of novel applications. The aim of the review is to offer a current and up-to-date understanding of the state-of-the-art in MXene-based electrodes for supercapacitors and to stimulate further research in the field.
Collapse
Affiliation(s)
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.V.P.V.); (J.S.)
| | - Pitcheri Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India;
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| |
Collapse
|
3
|
Ragupathi J, Annal Therese H. Synthesis of One‐Dimensional Mo
2
C‐Embedded Carbon Nanofibers with Enhanced Lithium Storage Capacity for Lithium‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202201924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeevani Ragupathi
- Nanotechnology Research Centre SRM Institute of Science and Technology, Kattankulathur Chengalpattu 603203, Tamil Nadu India
| | - Helen Annal Therese
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur Chengalpattu 603203 Tamil Nadu India
| |
Collapse
|
4
|
Ni(NO3)2-induced high electrocatalytic hydrogen evolution performance of self-supported fold-like WC coating on carbon fiber paper prepared through molten salt method. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Ali M, Pervaiz E, Rabi O. Enhancing the Overall Electrocatalytic Water-Splitting Efficiency of Mo 2C Nanoparticles by Forming Hybrids with UiO-66 MOF. ACS OMEGA 2021; 6:34219-34228. [PMID: 34963908 PMCID: PMC8696999 DOI: 10.1021/acsomega.1c03115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 05/25/2023]
Abstract
For efficient electrocatalytic water-splitting, developing a nonprecious-metal-based stable and highly active material is the most challenging task. In this paper, we have devised a synthesis strategy for a hybrid catalyst composed of molybdenum carbide (Mo2C) and a Zr-based metal-organic framework (MOF) (UiO-66) via the solvothermal process. Synergistic effects between Mo2C and UiO-66 lead to a decrease in the hydrogen adsorption energy on the catalysts, and Mo2C/UiO-66 hybrids offer excellent catalytic activity in an alkaline environment for water-splitting. Particularly, the optimized Mo2C/UiO-66 hybrid, termed MCU-2 with 50:50 wt % of both components, displayed the best catalytic performance for both hydrogen and oxygen evolution reactions (HER/OER). It offered a small overpotential of 174.1 mV to attain a current density of 10 mA/cm2 and a Tafel plot value of 147 mV/dec for HER. It also offered a low overpotential of around 180 mV to attain a current density of 20 mA/cm2 and a Tafel plot value of 134 mV/dec for OER. Additionally, the catalyst was stable for over 24 h and ∼1000 cycles with a very minute shift in performance, and the electrolyzer indicates that a potential of ∼1.3 V is required to reach 10 mA/cm2 current density. It can be inferred from the results that the Mo2C/UiO-66 hybrid is a promising candidate as a nonexpensive and active catalyst for overall electrocatalytic water-splitting as the devised catalyst exhibits enhanced kinetics for both OER and HER, a more exposed surface area, faster electron transport, and enhanced diffusion of the electrolyte.
Collapse
|
6
|
Abstract
Transition metal dichalcogenides (TMDs) are the auspicious inexpensive electrocatalysts for the hydrogen evolution reaction (HER) which has been broadly studied owing to their remarkable enactment, however the drought of factors understanding were highly influenced to hinder their electrocatalytic behavior. Recently, transition metal carbide (TMC) has also emerged as an attractive electrode material due to their excellent ionic and electronic transport behavior. In this work, Mo2C@WS2 hybrids have been fabricated through a simple chemical reaction method. Constructed heterostructure electrocatalyts presented the small Tafel slope of 59 and 95 mV per decade and low overpotential of 93 mV and 98 @10 mA·cm−2 for HER in acidic and alkaline solution, respectively. In addition, 24-h robust stability with the improved interfacial interaction demonstrated the suitability of hybrid electrocatalyst for HER than their pure form of Mo2C and WS2 structures. The derived outcomes describe the generated abundant active sites and conductivity enhancement in TMC/TMD heterostructure along with the weaken ion/electron diffusion resistance for efficient energy generation applications.
Collapse
|
7
|
Hussain S, Abbas Zaidi S, Vikraman D, Kim HS, Jung J. Facile preparation of tungsten carbide nanoparticles for an efficient oxalic acid sensor via imprinting. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kuznetsov V, Gamburg Y, Zhulikov V, Krutskikh V, Filatova E, Trigub A, Belyakova O. Electrodeposited NiMo, CoMo, ReNi, and electroless NiReP alloys as cathode materials for hydrogen evolution reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Hussain S, Rabani I, Vikraman D, Feroze A, Ali M, Seo YS, Kim HS, Chun SH, Jung J. One-Pot Synthesis of W 2C/WS 2 Hybrid Nanostructures for Improved Hydrogen Evolution Reactions and Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1597. [PMID: 32823986 PMCID: PMC7466642 DOI: 10.3390/nano10081597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Tungsten sulfide (WS2) and tungsten carbide (W2C) are materialized as the auspicious candidates for various electrochemical applications, owing to their plentiful active edge sites and better conductivity. In this work, the integration of W2C and WS2 was performed by using a simple chemical reaction to form W2C/WS2 hybrid as a proficient electrode for hydrogen evolution and supercapacitors. For the first time, a W2C/WS2 hybrid was engaged as a supercapacitor electrode and explored an incredible specific capacitance of ~1018 F g-1 at 1 A g-1 with the outstanding robustness. Furthermore, the constructed symmetric supercapacitor using W2C/WS2 possessed an energy density of 45.5 Wh kg-1 at 0.5 kW kg-1 power density. For hydrogen evolution, the W2C/WS2 hybrid produced the low overpotentials of 133 and 105 mV at 10 mA cm-2 with the small Tafel slopes of 70 and 84 mV dec-1 in acidic and alkaline media, respectively, proving their outstanding interfaced electrocatalytic characteristics. The engineered W2C/WS2-based electrode offered the high-performance for electrochemical energy applications.
Collapse
Affiliation(s)
- Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea;
- Department of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea; (I.R.); (Y.-S.S.)
| | - Iqra Rabani
- Department of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea; (I.R.); (Y.-S.S.)
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (D.V.); (H.-S.K.)
| | - Asad Feroze
- Department of Physics, Sejong University, Seoul 05006, Korea; (A.F.); (S.-H.C.)
| | - Muhammad Ali
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Young-Soo Seo
- Department of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea; (I.R.); (Y.-S.S.)
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (D.V.); (H.-S.K.)
| | - Seung-Hyun Chun
- Department of Physics, Sejong University, Seoul 05006, Korea; (A.F.); (S.-H.C.)
| | - Jongwan Jung
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea;
- Department of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea; (I.R.); (Y.-S.S.)
| |
Collapse
|
10
|
Wu Y, Sun R, Cen J. Facile Synthesis of Cobalt Oxide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Front Chem 2020; 8:386. [PMID: 32457876 PMCID: PMC7221197 DOI: 10.3389/fchem.2020.00386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogen evolution reaction (HER) is receiving a lot of attention because it produces clean energy hydrogen. Catalyst is the key to the promotion and application of HER. However, the precious metal catalysts with good catalytic performance are expensive, and the preparation process of non-precious metal catalysts is extremely complicated. The simple preparation process is the most important problem to be solved in HER catalyst development. We synthetized cobalt oxide (CoOx) catalyst for HER through a simple hydrothermal process. The CoOx catalyst shows excellent HER catalytic activity. Characterization results reveal that there are a great deal of surface hydroxyl groups or oxygen vacancy on the surface of CoOx catalyst. In alkaline media the CoOx catalyst shows an over-potential of 112 mV at 20 mA cm-2 and a small Tafel slope of 94 mV dec-1. This paper provides a simple and easy method for HER catalyst preparation.
Collapse
Affiliation(s)
- Yinbo Wu
- Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ruirui Sun
- Safety and Environmental Protection Division of Jilin Petrochemical Company, PetroChina, Jilin, China
| | - Jian Cen
- Guangdong Polytechnic Normal University, Guangzhou, China
- The Key Laboratory for Smart Building Equipment Integration of Guangzhou, Guangzhou, China
| |
Collapse
|