1
|
Selzer AM, Gerlach G, Gonzalez-Areizaga G, Wales TE, Cui SY, Iyer P, Engen JR, Camacho C, Ishima R, Smithgall TE. An SH3-binding allosteric modulator stabilizes the global conformation of the AML-associated Src-family kinase, Hck. J Biol Chem 2024:108088. [PMID: 39675702 DOI: 10.1016/j.jbc.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
While ATP-site inhibitors for protein-tyrosine kinases are often effective drugs, their clinical utility can be limited by off-target activity and acquired resistance mutations due to the conserved nature of the ATP-binding site. However, combining ATP-site and allosteric kinase inhibitors can overcome these shortcomings in a double-drugging framework. Here we explored the allosteric effects of two pyrimidine diamines, PDA1 and PDA2, on the conformational dynamics and activity of the Src-family tyrosine kinase Hck, a promising drug target for acute myeloid leukemia. Using 1H-15N HSQC NMR, we mapped the binding site for both analogs to the SH3 domain. Despite the shared binding site, PDA1 and PDA2 had opposing effects on near-full-length Hck dynamics by hydrogen-deuterium exchange mass spectrometry, with PDA1 stabilizing and PDA2 disrupting the overall kinase conformation. Kinase activity assays were consistent with these observations, with PDA2 enhancing kinase activity while PDA1 was without effect. Molecular dynamics simulations predicted selective bridging of the kinase domain N-lobe and SH3 domain by PDA1, a mechanism of allosteric stabilization supported by site-directed mutagenesis of N-lobe contact sites. Cellular thermal shift assays confirmed SH3 domain-dependent interaction of PDA1 with wild-type Hck in myeloid leukemia cells and with a kinase domain gatekeeper mutant (T338M). These results identify PDA1 as a starting point for Src-family kinase allosteric inhibitor development that may work in concert with ATP-site inhibitors to suppress the evolution of resistance.
Collapse
Affiliation(s)
- Ari M Selzer
- Department of Microbiology and Molecular Genetics
| | | | | | - Thomas E Wales
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA 02115
| | - Stephanie Y Cui
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh PA 15261
| | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh PA 15261
| | - John R Engen
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA 02115
| | | | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | | |
Collapse
|
2
|
Selzer AM, Alvarado JJ, Smithgall TE. Cocrystallization of the Src-Family Kinase Hck with the ATP-Site Inhibitor A-419259 Stabilizes an Extended Activation Loop Conformation. Biochemistry 2024; 63:2594-2601. [PMID: 39315638 PMCID: PMC11483750 DOI: 10.1021/acs.biochem.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src kinase family and is a promising drug target in myeloid leukemias. Here, we report the crystal structure of human Hck in complex with the pyrrolopyrimidine inhibitor A-419259, determined at a resolution of 1.8 Å. This structure reveals the complete Hck active site in the presence of A-419259, including the αC-helix, the DFG motif, and the activation loop. A-419259 binds at the ATP-site of Hck and induces an overall closed conformation of the kinase with the regulatory SH3 and SH2 domains bound intramolecularly to their respective internal ligands. A-419259 stabilizes the DFG-in/αC-helix-out conformation observed previously with Hck and the pyrazolopyrimidine inhibitor PP1 (PDB: 1QCF). However, the activation loop conformations are distinct, with PP1 inducing a folded loop structure with the tyrosine autophosphorylation site (Tyr416) pointing into the ATP binding site, while A-419259 stabilizes an extended loop conformation with Tyr416 facing out into the solvent. Autophosphorylation also induces activation loop extension and significantly reduces the Hck sensitivity to PP1 but not A-419259. In cancer cells where Hck is constitutively active, the extended autophosphorylation loop may render Hck more sensitive to inhibitors like A-419259 which prefer this kinase conformation. More generally, these results provide additional insight into targeted kinase inhibitor design and how conformational preferences of inhibitors may impact selectivity and potency.
Collapse
Affiliation(s)
- Ari M. Selzer
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| | - John J. Alvarado
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| | - Thomas E. Smithgall
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| |
Collapse
|
3
|
Zeng Q, He J, Chen X, Yuan Q, Yin L, Liang Y, Zu X, Shen Y. Recent advances in hematopoietic cell kinase in cancer progression: Mechanisms and inhibitors. Biomed Pharmacother 2024; 176:116932. [PMID: 38870631 DOI: 10.1016/j.biopha.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Hematopoietic cell kinase (Hck), a non-receptor tyrosine kinase belonging to the Src kinase family, is intricately linked to the pathogenesis of numerous human diseases, with a particularly pronounced association with cancer. Hck not only directly impacts the proliferation, migration, and apoptosis of cancer cells but also interacts with JAK/STAT, MEK/ERK, PI3K/AKT, CXCL12/CXCR4, and other pathways. Hck also influences the tumor microenvironment to facilitate the onset and progression of cancer. This paper delves into the functional role and regulatory mechanisms of Hck in various solid tumors. Additionally, it explores the implications of Hck in hematological malignancies. The review culminates with a summary of the current research status of Hck inhibitors, the majority of which are in the pre-clinical phase of investigation. Notably, these inhibitors are predominantly utilized in the therapeutic management of leukemia, with their combinatorial potential indicating promising avenues for future research. In conclusion, this review underscores the significance of the mechanism of Hck in solid tumors. This insight is crucial for comprehending the current research trends regarding Hck: targeted therapy against Hck shows great promise in both diagnosis and treatment of malignant tumors. Further investigation into the role of Hck in cancer, coupled with the development of specific inhibitors, has the potential to revolutionize approaches to cancer treatment.
Collapse
Affiliation(s)
- Qiting Zeng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiong Yuan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuxin Liang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan 421001, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Early-onset pulmonary and cutaneous vasculitis driven by constitutively active SRC-family kinase HCK. J Allergy Clin Immunol 2021; 149:1464-1472.e3. [PMID: 34536415 DOI: 10.1016/j.jaci.2021.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are genetic disorders characterized by various degrees of immune dysregulation that can manifest as immune deficiency, autoimmunity or autoinflammation. The routine use of next-generation sequencing in the clinic has facilitated the identification of an ever-increasing number of IEI, revealing the roles of immunologically important genes in human pathologies. However, despite this progress, treatment is still extremely challenging. OBJECTIVE We report a new monogenic autoinflammatory disorder caused by a de novo activating mutation, p.Tyr515*, in hematopoietic cell kinase (HCK). The disease is characterized by cutaneous vasculitis and chronic pulmonary inflammation that progresses to fibrosis. METHODS Whole-exome sequencing, Sanger sequencing, mass spectrometry and western blotting were performed to identify and characterize the pathogenic HCK mutation. Dysregulation of mutant HCK was confirmed ex vivo in primary cells and in vitro in transduced cell lines. RESULTS Mutant HCK lacking the C-terminal inhibitory tyrosine Tyr522 exhibited increased kinase activity and enhanced myeloid cell priming, migration and effector functions, such as production of the inflammatory cytokines IL-1β, IL-6, IL-8 and TNFα and production of reactive oxygen species. These aberrant functions were reflected by inflammatory leukocyte infiltration of the lungs and skin. Moreover, an overview of the clinical course of the disease, including therapies, provides evidence for the therapeutic efficacy of the Janus kinase (JAK) 1/2 inhibitor ruxolitinib in inflammatory lung disease. CONCLUSION We propose HCK-driven pulmonary and cutaneous vasculitis as a novel autoinflammatory disorder of IEI.
Collapse
|
5
|
Identification of key genes in the tumor microenvironment of lung adenocarcinoma. Med Oncol 2021; 38:83. [PMID: 34117948 DOI: 10.1007/s12032-021-01529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 01/12/2023]
Abstract
The tumor microenvironment plays an important role in tumor development and progression, but the role of immune and stromal cells in this environment has not been sufficiently studied. In this study, we aimed to identify key genes associated with the microenvironment of lung adenocarcinoma (LUAD). Raw data for stromal and immune cells in malignant tumors were downloaded from The Cancer Genome Atlas (TCGA). These expression data were used to identify the differentially expressed genes (DEGs) in tissue samples of LUAD with high and low immune scores. A protein-protein interaction (PPI) network based on genes with significant differential expression was constructed. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to functionally annotate putative hub genes. These genes were assessed via Kaplan Meier analysis to determine their correlation with overall survival. In total, we identified 216 DEGs which were correlated with immune and stromal scores, including 30 hub genes which were identified based on the PPI network. Further analysis suggested that the expression levels of 10 of these genes were significantly correlated with overall survival of LUAD patients. These key hub genes included CCR2, CCR5, CD53, CYBB, HCK, IRF8, LCP2, PLEK, PTPRC, and TLR7. Moreover, the expression level of CCR2 was found to have strong prognostic value for LUAD patients. Additionally, high expression of CYBB was also correlated with better survival of patients with LUAD. The results of this study open several new avenues to explore in the treatment of LUAD.
Collapse
|
6
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
7
|
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295:15158-15171. [PMID: 32862141 DOI: 10.1074/jbc.rev120.012317] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Collapse
Affiliation(s)
- Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|