1
|
Tee SY, Kong J, Koh JJ, Teng CP, Wang X, Wang X, Teo SL, Thitsartarn W, Han MY, Seh ZW. Structurally and surficially activated TiO 2 nanomaterials for photochemical reactions. NANOSCALE 2024; 16:18165-18212. [PMID: 39268929 DOI: 10.1039/d4nr02342k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Renewable fuels and environmental remediation are of paramount importance in today's world due to escalating concerns about climate change, pollution, and the finite nature of fossil fuels. Transitioning to sustainable energy sources and addressing environmental pollution has become an urgent necessity. Photocatalysis, particularly harnessing solar energy to drive chemical reactions for environmental remediation and clean fuel production, holds significant promise among emerging technologies. As a benchmark semiconductor in photocatalysis, TiO2 photocatalyst offers an excellent solution for environmental remediation and serves as a key tool in energy conversion and chemical synthesis. Despite its status as the default photocatalyst, TiO2 suffers from drawbacks such as a high recombination rate of charge carriers, low electrical conductivity, and limited absorption in the visible light spectrum. This review provides an in-depth exploration of the fundamental principles of photocatalytic reactions and presents recent advancements in the development of TiO2 photocatalysts. It specifically focuses on strategic approaches aimed at enhancing the performance of TiO2 photocatalysts, including improving visible light absorption for efficient solar energy harvesting, enhancing charge separation and transportation efficiency, and ensuring stability for robust photocatalysis. Additionally, the review delves into the application of photodegradation and photocatalysis, particularly in critical processes such as water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide generation, and alcohol oxidation. It also highlights the novel use of TiO2 in plastic polymerization and degradation, showcasing its potential for converting plastic waste into valuable chemicals and fuels, thereby offering sustainable waste management solutions. By addressing these essential areas, the review offers valuable insights into the potential of TiO2 photocatalysis for addressing pressing environmental and energy challenges. Furthermore, the review encompasses the application of TiO2 photochromic systems, expanding its scope to include other innovative research and applications. Finally, it addresses the underlying challenges and provides perspectives on the future development of TiO2 photocatalysts. Through addressing these issues and implementing innovative strategies, TiO2 photocatalysis can continue to evolve and play a pivotal role in sustainable energy and environmental applications.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Justin Junqiang Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xizu Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| |
Collapse
|
2
|
Jarvin M, Rosaline DR, Gopalakrishnan T, Kamalam MBR, Foletto EL, Dotto GL, Inbanathan SSR. Remarkable photocatalytic performances towards pollutant degradation under sunlight and enhanced electrochemical properties of TiO 2/polymer nanohybrids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62832-62846. [PMID: 36947375 DOI: 10.1007/s11356-023-26486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
In this work, TiO2-based nanocomposites containing polyaniline (PANI), poly(1-naphthylamine) (PNA), and polyindole (PIN) were synthesized by effective and simple routes and posteriorly employed as photocatalysts and supercapacitors. Characterization techniques such as XRD, FTIR, FESEM, UV, and PL were employed to investigate the structural, morphological, and optical properties of materials. XRD analysis confirmed the successful formation of TiO2 and TiO2/polymer nanocomposites. PANI, PNA, and PIN polymers were well distributed on the surface of TiO2 nanoparticles and were investigated/explored from the FESEM analysis. The visible light absorption and the recombination rate of photogenerated charge carriers were confirmed by the UV-Vis and PL analysis. The photocatalytic properties of the nanocomposites were investigated towards malachite green (MG) dye degradation under sunlight. The dye degradation efficiency followed the order TiO2/PNA > TiO2/PANI > TiO2 > TiO2/PIN. The higher efficiency of TiO2/PNA can be associated with its smaller bandgap energy compared to the other materials. Electrochemical properties of materials were also examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experiment setup in an aqueous electrolyte. TiO2/PNA nanocomposite showed higher supercapacitor behavior compared to the other materials due to higher electrical conductivity of PNA and redox potential of TiO2 (pseudocapacitance).
Collapse
Affiliation(s)
- Mariadhas Jarvin
- Post Graduate and Research Department of Physics, The American College, Madurai, 625002, Tamil Nadu, India
| | - Daniel Rani Rosaline
- Post Graduate and Research Department of Chemistry, Lady Doak College, Madurai, 625002, Tamil Nadu, India
| | | | | | - Edson Luiz Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | | |
Collapse
|
3
|
Moradi S, Rodriguez-Seco C, Hayati F, Ma D. Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection. ACS NANOSCIENCE AU 2023; 3:103-129. [PMID: 37096232 PMCID: PMC10119989 DOI: 10.1021/acsnanoscienceau.2c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 04/26/2023]
Abstract
Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.
Collapse
Affiliation(s)
- Sina Moradi
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Cristina Rodriguez-Seco
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Farzan Hayati
- Department
of Chemical and Biological Engineering, University of Saskatchewan, SaskatoonS7N 5A9, SK, Canada
| | - Dongling Ma
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| |
Collapse
|
4
|
Das D, Das BK, Sarkar R, Mukherjee S, Chattopadhyay KK. Highly exfoliated graphitic carbon nitride for efficient removal of wastewater pollutants: Insights from DFT and statistical modelling. ENVIRONMENTAL RESEARCH 2023; 221:115263. [PMID: 36640940 DOI: 10.1016/j.envres.2023.115263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The present work entails the synthesis of thermally modified graphitic carbon nitride (GCN) using a two-step thermal treatment procedure and its subsequent use in the photocatalytic reduction of toxic pollutants such as rhodamine B dye (RhB) and chromium (VI) (Cr(VI)) from aquatic environments. The as-synthesised exfoliated GCN (GCNX) is characterised by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller analysis (BET), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). These characterisations helped to elucidate the phase formation, chemical structure, composition, surface area, optical properties, and morphology of the sample. With assistance from a visible light source, GCNX can degrade RhB dye within 30 min in the presence of hydrogen peroxide (H2O2) and reduce Cr(VI) to Cr(III) in under 2 h in the presence of formic acid (FA/HCOOH). Variations in different catalytic parameters, including catalyst amount, pH of the solution, initial RhB or Cr(VI) concentration, and variation in H2O2 or FA concentration, are performed to inspect their effects on the photodegradation activity of GCNX. Moreover, the GCNX catalyst exhibits impressive stability and reusability. A thorough statistical evaluation follows the response surface methodology to understand the complex interaction between the factors contributing to the catalytic activity. The band alignment of differently functionalised GCN blocks in their pristine form and their H2O2/FA-adsorbed states is investigated using first-principles calculations to provide a further understanding of the RhB and Cr(VI) reduction mechanisms. The modified GCN can thus be effectively employed as a low-cost material for removing contamination from aquatic environments.
Collapse
Affiliation(s)
- Dimitra Das
- School of Materials Science and Nanotechnology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Bikram Kumar Das
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Ratna Sarkar
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Somnath Mukherjee
- Department of Civil Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Kalyan Kumar Chattopadhyay
- School of Materials Science and Nanotechnology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India; Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
5
|
Assadi AA, Baaloudj O, Khezami L, Ben Hamadi N, Mouni L, Assadi AA, Ghorbal A. An Overview of Recent Developments in Improving the Photocatalytic Activity of TiO 2-Based Materials for the Treatment of Indoor Air and Bacterial Inactivation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2246. [PMID: 36984127 PMCID: PMC10056653 DOI: 10.3390/ma16062246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality has become a significant public health concern. The low cost and high efficiency of photocatalytic technology make it a natural choice for achieving deep air purification. Photocatalysis procedures have been widely investigated for environmental remediation, particularly for air treatment. Several semiconductors, such as TiO2, have been used for photocatalytic purposes as catalysts, and they have earned a lot of interest in the last few years owing to their outstanding features. In this context, this review has collected and discussed recent studies on advances in improving the photocatalytic activity of TiO2-based materials for indoor air treatment and bacterial inactivation. In addition, it has elucidated the properties of some widely used TiO2-based catalysts and their advantages in the photocatalytic process as well as improved photocatalytic activity using doping and heterojunction techniques. Current publications about various combined catalysts have been summarized and reviewed to emphasize the significance of combining catalysts to increase air treatment efficiency. Besides, this paper summarized works that used these catalysts to remove volatile organic compounds (VOCs) and microorganisms. Moreover, the reaction mechanism has been described and summarized based on literature to comprehend further pollutant elimination and microorganism inactivation using photocatalysis. This review concludes with a general opinion and an outlook on potential future research topics, including viral disinfection and other hazardous gases.
Collapse
Affiliation(s)
- Achraf Amir Assadi
- Center for Research on Microelectronics and Nanotechnology, CRMN Sousse Techno Park, Sahloul BP 334, Sousse 4054, Tunisia
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, Université des Sciences et de la Technologie Houari Boumediene, BP 32, Algiers 16111, Algeria
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Lotfi Khezami
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université Bouira, Bouira 10000, Algeria
| | - Aymen Amine Assadi
- École Nationale Supérieure de Chimie de Rennes (ENSCR), Université de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, 35700 Rennes, France
| | - Achraf Ghorbal
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| |
Collapse
|
6
|
Moushumy ZM, Hassan MJ, Ahsan M, Hasan MM, Uddin MN, Nagao Y, Hasnat MA. Photocatalytic degradation of chlorazol yellow dye under sunlight irradiation using Ce, Bi, and N co-doped TiO 2 photocatalyst in neutral medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35153-35169. [PMID: 36527547 DOI: 10.1007/s11356-022-24220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Chlorazol yellow (CY) is a commonly used anionic, toxic, mutagenic, and potentially carcinogenic azo dye, which is menacing to the environment, aquatic system, food chain, and human health as well. To remove CY dye molecules from an aqueous medium, a series of Ce, Bi, and N co-doped TiO2 photocatalysts were prepared by varying the composition of the dopants. Under sunlight irradiation, the resultant 5 wt% (Ce-Bi-N) co-doped TiO2 composite catalyst was found to show the best catalytic activity. Hence, the required characterization of this catalyst was performed systematically using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques. From the thorough investigation, it is revealed that the CY molecules reached adsorption-desorption equilibrium onto the surface of the catalyst within 30 min following second-order kinetics. Herein, the catalyst attained 97% degradation when exposed to sunlight at neutral (pH ~ 7, [CY] = 5 mg L-1) medium. The developed catalyst can destruct CY molecules with a maximum rate of 23.1 µg CY g-1 min-1 and the photodegradation kinetics follows first-order kinetics below 23.5 mg L-1, a fractional order between 23.5 and 35.0 mg L-1, and a zeroth order above 35.0 mg L-1 of CY concentration. Finding from scavenging effect implies that [Formula: see text] and [Formula: see text] radicals have significant influence on the degradation. A suitable mechanism has been proposed with excellent stability and verified reusability of the proposed photocatalyst.
Collapse
Affiliation(s)
- Zannatul Mumtarin Moushumy
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Jobaer Hassan
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohebul Ahsan
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Mahmudul Hasan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Md Nizam Uddin
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
7
|
Liu C, Xu C, Wang W, Chen L, Li X, Wu Y. Oxygen Vacancy Mediated Band-Gap Engineering via B-Doping for Enhancing Z-Scheme A-TiO 2/R-TiO 2 Heterojunction Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:794. [PMID: 36903674 PMCID: PMC10005070 DOI: 10.3390/nano13050794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Fabrication of Z-scheme heterojunction photocatalysts is an ideal strategy for solving environmental problems by providing inexhaustible solar energy. A direct Z-scheme anatase TiO2/rutile TiO2 heterojunction photocatalyst was prepared using a facile B-doping strategy. The band structure and oxygen-vacancy content can be successfully tailored by controlling the amount of B-dopant. The photocatalytic performance was enhanced via the Z-scheme transfer path formed between the B doped anatase-TiO2 and rutile-TiO2, optimized band structure with markedly positively shifted band potentials, and the synergistically-mediated oxygen vacancy contents. Moreover, the optimization study indicated that 10% B-doping with the R-TiO2 to A-TiO2 weight ratio of 0.04 could achieve the highest photocatalytic performance. This work may provide an effective approach to synthesize nonmetal-doped semiconductor photocatalysts with tunable-energy structures and promote the efficiency of charge separation.
Collapse
|
8
|
Rezaeifard A, Rezaei M, Keikha N, Jafarpour M, Chen P, Jiang H. Enhanced Visible-Light-Induced Photocatalytic Activity in M(III)Salophen-Decorated TiO 2 Nanoparticles for Heterogeneous Degradation of Organic Dyes. ACS OMEGA 2023; 8:3821-3834. [PMID: 36743068 PMCID: PMC9893450 DOI: 10.1021/acsomega.2c05971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
In this work, the construction of two heterojunction photocatalysts by coordinative anchoring of M(salophen)Cl complexes (M = Fe(III) and Mn(III)) to rutile TiO2 through a silica-aminopyridine linker (SAPy) promotes the visible-light-assisted photodegradation of organic dyes. The degradation efficiency of both cationic rhodamine B (RhB) and anionic methyl orange (MO) dyes by Fe- and Mn-TiO2-based catalysts in the presence of H2O2 under sunlight and low-wattage visible bulbs (12-18 W) is investigated. Anionic MO is more degradable than cationic RhB, and the Mn catalyst shows more activity than its Fe counterpart. Action spectra demonstrate the maximum apparent quantum efficiency (AQY) at 400-450 nm, confirming the visible-light-driven photocatalytic reaction. The enhanced photocatalytic activity might be attributed to the improved charge transfer in the heterojunction photocatalysts evidenced by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analyses. A radical pathway for the photodegradation of dyes is postulated based on scavenging experiments and spectral data. This work provides new opportunities for constructing highly efficient catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Abdolreza Rezaeifard
- Catalysis
Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Masoumeh Rezaei
- Catalysis
Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Narges Keikha
- Catalysis
Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Maasoumeh Jafarpour
- Catalysis
Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Pinghua Chen
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang 330063, P. R. China
- Department
of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Hualin Jiang
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang 330063, P. R. China
- Department
of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
9
|
Photocatalytic Degradation and Mineralization of Estriol (E3) Hormone Using Boron-Doped TiO2 Catalyst. Catalysts 2022. [DOI: 10.3390/catal13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this research work, boron-doped titanium oxide (B-TiO2) was prepared by the sol-gel method to investigate its behavior in the degradation of the recalcitrant hormone estriol (E3). The doped photocatalyst was synthesized at different boron/titania ratios of 2, 3, and 5 wt.% of boron with respect to the TiO2 content. The obtained materials were characterized by UV-Vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The textural properties, specific surface area, and porosity were obtained from N2 adsorption–desorption isotherms by BET and BJH methods, respectively. The photocatalytic performance of each synthesized catalyst was evaluated on the degradation of an aqueous solution (10 mg/L) of estriol (E3) under simulated solar radiation. The variation in the hormone concentration was determined by the HPLC technique, and the mineralization was evaluated by the quantification of total organic carbon (TOC). The obtained results indicated that the catalyst with 3 wt.% of boron incorporation exhibited the best performance on the degradation and mineralization of estriol, achieving its complete degradation at 300 kJ/m2 of accumulated energy and 71% of mineralization at 400 kJ/m2 (2 h) obtaining a non-toxic effluent.
Collapse
|
10
|
Spáčilová M, Krejcikova S, Maleterova Y, Kastanek F, Solcova O. Scale-up of photoreactor with TiO 2 thin layer for wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1981-1990. [PMID: 36315090 DOI: 10.2166/wst.2022.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study is devoted to the scale-up potential of TiO2/UV photocatalyst for real wastewater treatment including its durability tests. The activity of the prepared TiO2 layers was first tested in a laboratory reactor on key representative pollutants diclofenac, chloramphenicol and triclosan. A special pilot plant reactor of a two-tube system with 21 stainless steel annulets covered by TiO2 thin layers and the inner volume of 3.5 L was constructed. Pilot tests were performed with wastewater from the pharmaceutical industry containing danazol and norethisterone with the concentration varying between 4 and 7 mg L-1 at the flow 18 L h-1 and municipal wastewater at the output sewage plant for 67,000 inhabitants containing bisphenol A, 4-nonyphenol, estron, ethinylestradiol and triclosan in the concentrations of the individual contaminants varying between 50 and 600 ng L-1 at the flow 200 L h-1. After the treatment during the pilot photocatalytic test, the concentration of individual contaminants decreased by 82-100%, while no decrease in the efficiency of the photocatalytic process was recorded during the long-term tests lasting for 3-6 months.
Collapse
Affiliation(s)
- Markéta Spáčilová
- Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 02 Prague 6, Czech Republic E-mail:
| | - Simona Krejcikova
- Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 02 Prague 6, Czech Republic E-mail:
| | - Ywetta Maleterova
- Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 02 Prague 6, Czech Republic E-mail:
| | - Frantisek Kastanek
- Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 02 Prague 6, Czech Republic E-mail:
| | - Olga Solcova
- Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 02 Prague 6, Czech Republic E-mail:
| |
Collapse
|
11
|
Cano-Casanova L, Ansón-Casaos A, Hernández-Ferrer J, Benito AM, Maser WK, Garro N, Lillo-Ródenas MA, Román-Martínez MC. Surface-Enriched Boron-Doped TiO 2 Nanoparticles as Photocatalysts for Propene Oxidation. ACS APPLIED NANO MATERIALS 2022; 5:12527-12539. [PMID: 36185169 PMCID: PMC9513816 DOI: 10.1021/acsanm.2c02217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
A series of nanostructured boron-TiO2 photocatalysts (B-X-TiO2-T) were prepared by sol-gel synthesis using titanium tetraisopropoxide and boric acid. The effects of the synthesis variables, boric acid amount (X) and crystallization temperature (T), on structural and electronic properties and on the photocatalytic performance for propene oxidation, are studied. This reaction accounts for the remediation of pollution caused by volatile organic compounds, and it is carried out at low concentrations, a case in which efficient removal techniques are difficult and costly to implement. The presence of boric acid during the TiO2 synthesis hinders the development of rutile without affecting the textural properties. X-ray photoelectron spectroscopy analysis reveals the interstitial incorporation of boron into the surface lattice of the TiO2 nanostructure, while segregation of B2O3 occurs in samples with high boron loading, also confirmed by X-ray diffraction. The best-performing photocatalysts are those with the lowest boron loading. Their high activity, outperforming the equivalent sample without boron, can be attributed to a high anatase and surface hydroxyl group content and efficient photo-charge separation (photoelectrochemical characterization, PEC), which can explain the suppression of visible photoluminescence (PL). Crystallization at 450 °C renders the most active sample, likely due to the development of a pure anatase structure with a large surface boron enrichment. A shift in the wavelength-dependent activity profile (PEC data) and the lowest electron-hole recombination rate (PL data) are also observed for this sample.
Collapse
Affiliation(s)
- L. Cano-Casanova
- Grupo
Materiales Carbonosos y Medio Ambiente, Departamento de Química
Inorgánica e Instituto Universitario de Materiales (IUMA),
Facultad de Ciencias, Universidad de Alicante, Ap.99, E-03080 Alicante, Spain
| | - A. Ansón-Casaos
- Instituto
de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - J. Hernández-Ferrer
- Instituto
de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - A. M. Benito
- Instituto
de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - W. K. Maser
- Instituto
de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - N. Garro
- Institut
de Ciència dels Materials (ICMUV), Universitat de València, 46980 Paterna, València, Spain
| | - M. A. Lillo-Ródenas
- Grupo
Materiales Carbonosos y Medio Ambiente, Departamento de Química
Inorgánica e Instituto Universitario de Materiales (IUMA),
Facultad de Ciencias, Universidad de Alicante, Ap.99, E-03080 Alicante, Spain
| | - M. C. Román-Martínez
- Grupo
Materiales Carbonosos y Medio Ambiente, Departamento de Química
Inorgánica e Instituto Universitario de Materiales (IUMA),
Facultad de Ciencias, Universidad de Alicante, Ap.99, E-03080 Alicante, Spain
| |
Collapse
|
12
|
Natural Sunlight Driven Photocatalytic Removal of Toxic Textile Dyes in Water Using B-Doped ZnO/TiO2 Nanocomposites. Catalysts 2022. [DOI: 10.3390/catal12030308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A novel B-doped ZnO/TiO2 (B–ZnO/TiO2) nanocomposite photocatalyst was prepared using a mechanochemical–calcination method. For the characterization of the synthesized B–ZnO/TiO2 photocatalyst, XRD, FESEM-EDS, FTIR, UV-Vis DRS, BET, PL, and XPS techniques were used. The bandgap energy of B–ZnO/TiO2 was reduced, resulting in enhanced visible-light absorption. Significant PL quenching confirmed the reduction in the electron–hole recombination rate. Furthermore, reduced crystallite size and a larger surface area were obtained. Hence, the B–ZnO/TiO2 photocatalyst exhibited better photocatalytic activity than commercial TiO2, ZnO, B–ZnO, and ZnO/TiO2 in the removal of methylene blue (MB) dye under natural sunlight irradiation. The effects of various parameters, such as initial concentration, photocatalyst amount, solution pH, and irradiation time, were studied. Under optimal conditions (MB concentration of 15 mg/L, pH 11, B–ZnO/TiO2 amount of 30 mg, and 15 min of operation), a maximum MB removal efficiency of ~95% was obtained. A plausible photocatalytic degradation mechanism of MB with B–ZnO/TiO2 was estimated from the scavenger test, and it was observed that the •O2− and •OH radicals were potential active species for the MB degradation. Cyclic experiments indicated the high stability and reusability of B–ZnO/TiO2, which confirmed that it can be an economical and environmentally friendly photocatalyst.
Collapse
|
13
|
Bin Arifin MN, Tarek M, Rahman Khan MM. Efficient Treatment of Organic Pollutants by Boron Doped TiO2 Photocatalysts under Visible Light Radiation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Smirnova MN, Kop’eva MA, Nikiforova GE, Yapryntsev AD, Nipan GD. Ti0.8B0.1P0.1O2 Solid Solution with the Anatase Structure. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621120184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Manipulating the electronic and photocatalytic properties of anatase TiO2 by metalloid doping. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Smirnova MN, Kop’eva MA, Nipan GD, Nikiforova GE. Phase Diagram of the TiO2–B2O3–P2O5 System. DOKLADY CHEMISTRY 2021. [DOI: 10.1134/s0012500821060033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Koysuren N. Enhanced Photocatalytic Activity of Boron Doped Silicon Carbide Nanofibers and Its Composite with Polyvinyl Borate. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1924199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nagehan Koysuren
- Department of Environmental Engineering, Kirsehir Ahi Evran University, Kirsehir, Turkey
| |
Collapse
|
18
|
Zhou D, Chen YX, Yuan XY, Lu Y, Zhang M, Liu JK. Self-induced synthesis under neutral conditions and novel visible light photocatalytic activity of Ag 4V 2O 7 polyoxometalate. NEW J CHEM 2021. [DOI: 10.1039/d1nj01390d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag4V2O7 POM with a nanorod-bundle structure was designed under neutral conditions, which showed good visible photodegradation performance against chloramphenicol.
Collapse
Affiliation(s)
- Dan Zhou
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi-Xiang Chen
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiao-Yu Yuan
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi Lu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Min Zhang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jin-Ku Liu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|