1
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
2
|
Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS MATERIALS AU 2023; 3:600-619. [PMID: 38089666 PMCID: PMC10636777 DOI: 10.1021/acsmaterialsau.3c00032] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 02/13/2024]
Abstract
Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.
Collapse
Affiliation(s)
- Meenu Mehta
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Thuy Anh Bui
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xinpu Yang
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yagiz Aksoy
- Cancer
Diagnosis and Pathology Group, Kolling Institute of Medical Research,
Royal North Shore Hospital, St Leonards NSW 2065 Australia - Sydney
Medical School, University of Sydney, Sydney NSW 2006 Australia
| | - Ewa M. Goldys
- Graduate
School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale
Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Wei Deng
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Tanaka M, Yasui M, Hara-Chikuma M. Aquaporin 3 inhibition suppresses the mitochondrial respiration rate and viability of multiple myeloma cells. Biochem Biophys Res Commun 2023; 676:158-164. [PMID: 37517218 DOI: 10.1016/j.bbrc.2023.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Aquaporin 3 (AQP3) is a member of the aquaporin water channel family expressed by numerous cell types, including some cancer cells. Accumulating evidence suggests that AQP3 inhibition may impede cancer progression, but drugs targeting AQP3 are still in the early pre-clinical stage of development. Here, we examined the effect of AQP3 inhibition on multiple myeloma (MM), an incurable plasma cell malignancy. Four MM cell lines were cultured in the presence of an anti-AQP3 monoclonal antibody (mAb), the AQP3 inhibitor DFP00173, or corresponding controls, and the effects on cell viability, proliferation, apoptosis, and mitochondrial respiration capacity were compared. Both anti-AQP3 mAb and DFP00173 reduced cell growth, mitochondrial respiration rate, and electron transport chain complex I activity. Both agents also potentiated the antiproliferative efficacy of the anticancer drug venetoclax. Administration of the anti-AQP3 mAb to immunodeficient mice inoculated with RPMI8226 or KMS-11 MM cells significantly suppressed tumor growth. These data provide evidence that AQP3 blockade can suppress MM cell growth in vitro and tumor growth in mice. Thus, AQP3 inhibition may be an effective therapeutic strategy for MM.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan; Keio Advanced Institute for Water Biology and Medicine, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan.
| |
Collapse
|
4
|
Atiya A, Batra S, Mohammad T, Alorfi NM, Abdulmonem WA, Alhumaydhi FA, Ashraf GM, Baeesa SS, Elasbali AM, Shahwan M. Desmodin and isopongachromene as potential inhibitors of cyclin-dependent kinase 5: phytoconstituents targeting anticancer and neurological therapy. J Biomol Struct Dyn 2023; 41:8042-8052. [PMID: 36184739 DOI: 10.1080/07391102.2022.2128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 10/07/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine-threonine protein kinase vital for neuronal cell cycle arrest and differentiation. It activates by binding with p35 and p39 and is important for the functioning of the nervous system. A growing body of evidence suggests that CDK5 contributes to the onset and progression of neurodegeneration and tumorigenesis and represents itself as a potential therapeutic target. Our research illustrates virtual screening of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) library to search for potential inhibitors of CDK5. Initially, the compounds from the parent library were filtered out via their physicochemical properties following the Lipinski rule of five. Then sequentially, molecular docking-based virtual screening, PAINS filter, ADMET, PASS analysis, and molecular dynamics (MD) simulation were done using various computational tools to rule out adversities that can cause hindrances in the identification of potential inhibitors of CDK5. Finally, two compounds were selected via the extensive screening showing significant binding with CDK5 ATP-binding pocket and ultimately were selected as potent ATP-competitive inhibitors of CDK5. Finally, we propose that the elucidated compounds Desmodin and Isopongachromene can be used further in the drug discovery process and act as therapeutics in the medical industry to treat certain complex diseases, including cancer and neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Shivani Batra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh S Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Moyad Shahwan
- College of Pharmacy, Ajman University, Abha, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Abha, United Arab Emirates
| |
Collapse
|
5
|
Paria P, Tassanakajon A. Identification of Potential Druggable Targets and Structure-Based Virtual Screening for Drug-like Molecules against the Shrimp Pathogen Enterocytozoon hepatopenaei. Int J Mol Sci 2023; 24:ijms24021412. [PMID: 36674953 PMCID: PMC9867128 DOI: 10.3390/ijms24021412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Enterocytozoon hepatopenaei (EHP) causes slow growth syndrome in shrimp, resulting in huge economic losses for the global shrimp industry. Despite worldwide reports, there are no effective therapeutics for controlling EHP infections. In this study, five potential druggable targets of EHP, namely, aquaporin (AQP), cytidine triphosphate (CTP) synthase, thymidine kinase (TK), methionine aminopeptidase2 (MetAP2), and dihydrofolate reductase (DHFR), were identified via functional classification of the whole EHP proteome. The three-dimensional structures of the proteins were constructed using the artificial-intelligence-based program AlphaFold 2. Following the prediction of druggable sites, the ZINC15 and ChEMBL databases were screened against targets using docking-based virtual screening. Molecules with affinity scores ≥ 7.5 and numbers of interactions ≥ 9 were initially selected and subsequently enriched based on their ADMET properties and electrostatic complementarities. Five compounds were finally selected against each target based on their complex stabilities and binding energies. The compounds CHEMBL3703838, CHEMBL2132563, and CHEMBL133039 were selected against AQP; CHEMBL1091856, CHEMBL1162979, and CHEMBL525202 against CTP synthase; CHEMBL4078273, CHEMBL1683320, and CHEMBL3674540 against TK; CHEMBL340488, CHEMBL1966988, and ZINC000828645375 against DHFR; and CHEMBL3913373, ZINC000016682972, and CHEMBL3142997 against MetAP2.The compounds exhibited high stabilities and low binding free energies, indicating their abilities to suppress EHP infections; however, further validation is necessary for determining their efficacy.
Collapse
|
6
|
Vera J, Lai X, Baur A, Erdmann M, Gupta S, Guttà C, Heinzerling L, Heppt MV, Kazmierczak PM, Kunz M, Lischer C, Pützer BM, Rehm M, Ostalecki C, Retzlaff J, Witt S, Wolkenhauer O, Berking C. Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Brief Bioinform 2022; 23:6761961. [PMID: 36252807 DOI: 10.1093/bib/bbac433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 12/19/2022] Open
Abstract
We live in an unprecedented time in oncology. We have accumulated samples and cases in cohorts larger and more complex than ever before. New technologies are available for quantifying solid or liquid samples at the molecular level. At the same time, we are now equipped with the computational power necessary to handle this enormous amount of quantitative data. Computational models are widely used helping us to substantiate and interpret data. Under the label of systems and precision medicine, we are putting all these developments together to improve and personalize the therapy of cancer. In this review, we use melanoma as a paradigm to present the successful application of these technologies but also to discuss possible future developments in patient care linked to them. Melanoma is a paradigmatic case for disruptive improvements in therapies, with a considerable number of metastatic melanoma patients benefiting from novel therapies. Nevertheless, a large proportion of patients does not respond to therapy or suffers from adverse events. Melanoma is an ideal case study to deploy advanced technologies not only due to the medical need but also to some intrinsic features of melanoma as a disease and the skin as an organ. From the perspective of data acquisition, the skin is the ideal organ due to its accessibility and suitability for many kinds of advanced imaging techniques. We put special emphasis on the necessity of computational strategies to integrate multiple sources of quantitative data describing the tumour at different scales and levels.
Collapse
Affiliation(s)
- Julio Vera
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Xin Lai
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Andreas Baur
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lucie Heinzerling
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany.,Department of Dermatology, LMU University Hospital, Munich, Germany
| | - Markus V Heppt
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany
| | - Christopher Lischer
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Christian Ostalecki
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Jimmy Retzlaff
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Carola Berking
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| |
Collapse
|
7
|
Yousuf M, Shamsi A, Mohammad T, Azum N, Alfaifi SYM, Asiri AM, Mohamed Elasbali A, Islam A, Hassan MI, Haque QMR. Inhibiting Cyclin-Dependent Kinase 6 by Taurine: Implications in Anticancer Therapeutics. ACS OMEGA 2022; 7:25844-25852. [PMID: 35910117 PMCID: PMC9330843 DOI: 10.1021/acsomega.2c03479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is linked with a cyclin partner and plays a crucial role in the early stages of cancer development. It is currently a potential drug target for developing therapeutic molecules targeting cancer therapy. Here, we have identified taurine as an inhibitor of CDK6 using combined in silico and experimental studies. We performed various experiments to find the binding affinity of taurine with CDK6. Molecular docking analysis revealed critical residues of CDK6 that are involved in taurine binding. Fluorescence measurement studies showed that taurine binds to CDK6 with a significant binding affinity, with a binding constant of K = 0.7 × 107 M-1 for the CDK6-taurine complex. Enzyme inhibition assay suggested taurine as a good inhibitor of CDK6 possessing an IC50 value of 4.44 μM. Isothermal titration calorimetry analysis further confirmed a spontaneous binding of taurine with CDK6 and delineated the thermodynamic parameters for the CDK6-taurine system. Altogether, this study established taurine as a CDK6 inhibitor, providing a base for using taurine and its derivatives in CDK6-associated cancer and other diseases.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Naved Azum
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y. M. Alfaifi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
8
|
Adnan M, Jairajpuri DS, Chaddha M, Khan MS, Yadav DK, Mohammad T, Elasbali AM, Abu Al-Soud W, Hussain Alharethi S, Hassan MI. Discovering Tuberosin and Villosol as Potent and Selective Inhibitors of AKT1 for Therapeutic Targeting of Oral Squamous Cell Carcinoma. J Pers Med 2022; 12:jpm12071083. [PMID: 35887580 PMCID: PMC9322152 DOI: 10.3390/jpm12071083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major cause of death in developing countries because of high tobacco consumption. RAC-alpha serine-threonine kinase (AKT1) is considered as an attractive drug target because its prolonged activation and overexpression are associated with cancer progression and metastasis. In addition, several AKT1 inhibitors are being developed to control OSCC and other associated forms of cancers. We performed a screening of the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database to discover promising AKT1 inhibitors which pass through various important filters such as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, physicochemical properties, PAINS (pan-assay interference compounds) filters, PASS (prediction of activity spectra for substances) analysis, and specific interactions with AKT1. Molecules bearing admirable binding affinity and specificity towards AKT1 were selected for further analysis. Initially, we identified 30 natural compounds bearing appreciable affinity and specific interaction with AKT1. Finally, tuberosin and villosol were selected as potent and selective AKT1 inhibitors. To obtain deeper insights into binding mechanism and selectivity, we performed an all-atom molecular dynamics (MD) simulation and principal component analysis (PCA). We observed that both tuberosin and villosol strongly bind to AKT1, and their complexes were stable throughout the simulation trajectories. Our in-depth structure analysis suggested that tuberosin and villosol could be further exploited in the therapeutic targeting of OSCC and other cancers after further clinical validations.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Bahrain;
| | - Muskan Chaddha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
- Health Sciences Research Unit, Jouf University, Sakaka 72388, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran 66252, Saudi Arabia;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
9
|
Vavra O, Damborsky J, Bednar D. Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnol Adv 2022; 60:108009. [PMID: 35738509 DOI: 10.1016/j.biotechadv.2022.108009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
Acceleration of chemical reactions by the enzymes optimized using protein engineering represents one of the key pillars of the contribution of biotechnology towards sustainability. Tunnels and channels of enzymes with buried active sites enable the exchange of ligands, ions, and water molecules between the outer environment and active site pockets. The efficient exchange of ligands is a fundamental process of biocatalysis. Therefore, enzymes have evolved a wide range of mechanisms for repetitive conformational changes that enable periodic opening and closing. Protein-ligand interactions are traditionally studied by molecular docking, whereas molecular dynamics is the method of choice for studying conformational changes and ligand transport. However, computational demands make molecular dynamics impractical for screening purposes. Thus, several approximative methods have been recently developed to study interactions between a protein and ligand during the ligand transport process. Apart from identifying the best binding modes, these methods also provide information on the energetics of the transport and identify problematic regions limiting the ligand passage. These methods use approximations to simulate binding or unbinding events rapidly (calculation times from minutes to hours) and provide energy profiles that can be used to rank ligands or pathways. Here we provide a critical comparison of available methods, showcase their results on sample systems, discuss their practical applications in molecular biotechnologies and outline possible future developments.
Collapse
Affiliation(s)
- Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic; Enantis, INBIT, Kamenice 34, 625 00 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
10
|
Yang C, Alam A, Alhumaydhi FA, Khan MS, Alsagaby SA, Al Abdulmonem W, Hassan MI, Shamsi A, Bano B, Yadav DK. Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103060. [PMID: 35630545 PMCID: PMC9147520 DOI: 10.3390/molecules27103060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
Abstract
Tyrosine-protein kinase Yes (YES1) belongs to the Tyrosine-protein kinase family and is involved in several biological activities, including cell survival, cell–cell adhesion, cell differentiation, and cytoskeleton remodeling. It is highly expressed in esophageal, lung, and bladder cancers, and thus considered as an attractive drug target for cancer therapy. In this study, we performed a virtual screening of phytoconstituents from the IMPPAT database to identify potential inhibitors of YES1. Initially, the molecules were retrieved on their physicochemical properties following the Lipinski rule of five. Then binding affinities calculation, PAINS filter, ADMET, and PASS analyses followed by an interaction analysis to select safe and clinically better hits. Finally, two compounds, Glabrene and Lupinisoflavone C (LIC), with appreciable affinities and a specific interaction towards the AlphaFold predicted structure of YES1, were identified. Their time-evolution analyses were carried out using an all-atom molecular dynamics (MD) simulation, principal component analysis, and free energy landscapes. Altogether, we propose that Glabrene and LIC can be further explored in clinical settings to develop anticancer therapeutics targeting YES1 kinase.
Collapse
Affiliation(s)
- Chunmin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China;
| | - Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraydah 52571, Saudi Arabia;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.I.H.); (A.S.)
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.I.H.); (A.S.)
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bilqees Bano
- Department of Biochemistry, f/O Life Science, Aligarh Muslim University, Aligarh 202002, India
- Correspondence: (B.B.); (D.K.Y.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (B.B.); (D.K.Y.)
| |
Collapse
|
11
|
Mir SA, Nayak B. Exploring binding stability of hydroxy-3-(4-hydroxyphenyl)-5-(4-nitrophenyl)-5,5a,7,8,9,9a-hexahydrothiazolo[2,3-b] quinazolin-6-one with T790M/L858R EGFR-TKD. J Biomol Struct Dyn 2022; 41:3702-3716. [PMID: 35343861 DOI: 10.1080/07391102.2022.2053748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer causes innumerable deaths every year globally. Breast cancer and non-small cell lung carcinoma are the most prevalent worldwide. EGFR-TKD is a neoplastic survival therapeutic target in a wide array of carcinoma cells. Various non-specific tyrosine kinase inhibitors lead to hyperphosphorylation and overexpression of EGFR-TKD and further mutations recognise deletion of exon 19. In this work, we study the binding affinity, binding stability, and strength of hydroxy-3-(4-hydroxyphenyl)-5-(4-nitrophenyl)-5,5a,7,8,9,9a-hexahydrothiazolo[2,3-b] quinazolin-6-one with TMLR mutated EGFR-TKD (T790M/L858R). The collective motions, residual mobility, and flexibility of TMLR mutated EGFR-TKD bound with reference and title molecule were calculated by principal component analysis. The meta-state conformations of both the simulated complexes were determined by Gibb's energy landscape analysis. The binding affinity exhibited by thiazolo-[2,3-b] quinazolinone and the reference molecule was found to be -7.95 ± 0.088 Kcal/mol and -9.13 ± 0.018 kcal/mol with TMLR mutated EGFR-TKD. The alignment of both the docked complexes was done by blosum40 matrix. Similar spatial orientations were exhibited by the synthesised ligand in the binding pocket of TMLR mutated EGFR-TKD, corresponding to the reference ligand. The ligand stability was computed for 100 ns. In addition, the radius of gyration, solvent accessible surface area, hydrogen bonds formed was calculated. The average ΔGbind of thiazolo-[2,3-b] quinazolinone was -41.212 ± 0.834 kJ/mol and for reference ligand -71.938 ± 0.367 kJ/mol, calculated by MM-PBSA. ADMET analysis concludes thiazolo-[2,3-b] quinazolinone derivative is safe. Further research work is encouraged to determine the efficacy of thiazolo-[2,3-b] quinazolinone against in vivo models.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Burla, Odisha, India
| |
Collapse
|
12
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
13
|
Shamsi A, Shahwan M, Khan MS, Alhumaydhi FA, Alsagaby SA, Al Abdulmonem W, Abdullaev B, Yadav DK. Mechanistic Insight into Binding of Huperzine A with Human Serum Albumin: Computational and Spectroscopic Approaches. Molecules 2022; 27:797. [PMID: 35164061 PMCID: PMC8839580 DOI: 10.3390/molecules27030797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma synthesized by the liver and the main modulator of fluid distribution between body compartments. It has an amazing capacity to bind with multiple ligands, offering a store and transporter for various endogenous and exogenous compounds. Huperzine A (HpzA) is a natural sesquiterpene alkaloid found in Huperzia serrata and used in various neurological conditions, including Alzheimer's disease (AD). This study elucidated the binding of HpzA with HSA using advanced computational approaches such as molecular docking and molecular dynamic (MD) simulation followed by fluorescence-based binding assays. The molecular docking result showed plausible interaction between HpzA and HSA. The MD simulation and principal component analysis (PCA) results supported the stable interactions of the protein-ligand complex. The fluorescence assay further validated the in silico study, revealing significant binding affinity between HpzA and HSA. This study advocated that HpzA acts as a latent HSA binding partner, which may be investigated further in AD therapy in experimental settings.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Bekhzod Abdullaev
- Scientific Department, Akfa University, Tashkent 100022, Uzbekistan;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
14
|
Anjum F, Sulaimani MN, Shafie A, Mohammad T, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Alsagaby SA, Yadav DK, Hassan MI. Bioactive phytoconstituents as potent inhibitors of casein kinase-2: dual implications in cancer and COVID-19 therapeutics. RSC Adv 2022; 12:7872-7882. [PMID: 35424745 PMCID: PMC8982221 DOI: 10.1039/d1ra09339h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 2 (CK2) is a conserved serine/threonine-protein kinase involved in hematopoietic cell survival, cell cycle control, DNA repair, and other cellular processes. It plays a significant role in cancer progression and viral infection. CK2 is considered a potential drug target in cancers and COVID-19 therapy. In this study, we have performed a virtual screening of phytoconstituents from the IMPPAT database to identify some potential inhibitors of CK2. The initial filter was the physicochemical properties of the molecules following the Lipinski rule of five. Then binding affinity calculation, PAINS filter, ADMET, and PASS analyses followed by interaction analysis were carried out to discover nontoxic and better hits. Finally, two compounds, stylopine and dehydroevodiamines with appreciable affinity and specific interaction towards CK2, were identified. Their time-evolution analyses were carried out using all-atom molecular dynamics simulation, principal component analysis and free energy landscape. Altogether, we propose that stylopine and dehydroevodiamines can be further explored in in vitro and in vivo settings to develop anticancer and antiviral therapeutics. Showing protein–ligands interactions, electrostatic potential of CK2 bound to selected compounds, free energy landscapes of CK2-stylopine, and CK2-dehydroevodiamines complexes.![]()
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia 21589
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, Korea
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
15
|
Shafie A, Khan S, Zehra, Mohammad T, Anjum F, Hasan GM, Yadav DK, Hassan MI. Identification of Phytoconstituents as Potent Inhibitors of Casein Kinase-1 Alpha Using Virtual Screening and Molecular Dynamics Simulations. Pharmaceutics 2021; 13:2157. [PMID: 34959438 PMCID: PMC8707374 DOI: 10.3390/pharmaceutics13122157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Casein kinase-1 alpha (CK1α) is a multifunctional protein kinase that belongs to the serine/threonine kinases of the CK1α family. It is involved in various signaling pathways associated with chromosome segregation, cell metabolism, cell cycle progression, apoptosis, autophagy, etc. It has been known to involve in the progression of many diseases, including cancer, neurodegeneration, obesity, and behavioral disorders. The elevated expression of CK1α in diseased conditions facilitates its selective targeting for therapeutic management. Here, we have performed virtual screening of phytoconstituents from the IMPPAT database seeking potential inhibitors of CK1α. First, a cluster of compounds was retrieved based on physicochemical parameters following Lipinski's rules and PAINS filter. Further, high-affinity hits against CK1α were obtained based on their binding affinity score. Furthermore, the ADMET, PAINS, and PASS evaluation was carried out to select more potent hits. Finally, following the interaction analysis, we elucidated three phytoconstituents, Semiglabrinol, Curcusone_A, and Liriodenine, posturing considerable affinity and specificity towards the CK1α binding pocket. The result was further evaluated by molecular dynamics (MD) simulations, dynamical cross-correlation matrix (DCCM), and principal components analysis (PCA), which revealed that binding of the selected compounds, especially Semiglabrinol, stabilizes CK1α and leads to fewer conformational fluctuations. The MM-PBSA analysis suggested an appreciable binding affinity of all three compounds toward CK1α.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa;
| | - Zehra
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, Korea
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| |
Collapse
|
16
|
Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci Rep 2021; 11:20851. [PMID: 34675286 PMCID: PMC8531315 DOI: 10.1038/s41598-021-00409-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
Collapse
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia.
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia.
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Habeebat Adekilekun Oyewusi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor, Bahru, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| |
Collapse
|
17
|
Waseem R, Anwar S, Khan S, Shamsi A, Hassan MI, Anjum F, Shafie A, Islam A, Yadav DK. MAP/Microtubule Affinity Regulating Kinase 4 Inhibitory Potential of Irisin: A New Therapeutic Strategy to Combat Cancer and Alzheimer's Disease. Int J Mol Sci 2021; 22:10986. [PMID: 34681645 PMCID: PMC8537121 DOI: 10.3390/ijms222010986] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Irisin is a clinically significant protein playing a valuable role in regulating various diseases. Irisin attenuates synaptic and memory dysfunction, highlighting its importance in Alzheimer's disease. On the other hand, Microtubule Affinity Regulating Kinase 4 (MARK4) is associated with various cancer types, uncontrolled neuronal migrations, and disrupted microtubule dynamics. In addition, MARK4 has been explored as a potential drug target for cancer and Alzheimer's disease therapy. Here, we studied the binding and subsequent inhibition of MARK4 by irisin. Irisin binds to MARK4 with an admirable affinity (K = 0.8 × 107 M-1), subsequently inhibiting its activity (IC50 = 2.71 µm). In vitro studies were further validated by docking and simulations. Molecular docking revealed several hydrogen bonds between irisin and MARK4, including critical residues, Lys38, Val40, and Ser134. Furthermore, the molecular dynamic simulation showed that the binding of irisin resulted in enhanced stability of MARK4. This study provides a rationale to use irisin as a therapeutic agent to treat MARK4-associated diseases.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa;
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, Korea
| |
Collapse
|
18
|
Sarkar A, Sen D, Sharma A, Muttineni RK, Debnath S. Structure-Based Virtual Screening and Molecular Dynamics Simulation to Identify Potential SARS-CoV-2 Spike Receptor Inhibitors from Natural Compound Database. Pharm Chem J 2021; 55:441-453. [PMID: 34426710 PMCID: PMC8374036 DOI: 10.1007/s11094-021-02441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/30/2022]
Abstract
The outbreak of respiratory disease, COVID-19 caused by SARS-CoV-2 has now been spread globally and the number of new infections is rising every moment. There are no specific medications that are currently available to combat the disease. The spike receptor of SARS-CoV-2 facilitates the viral entry into a host cell and initiation of infection. Targeting the viral entry at the initial stage has a better advantage than inhibiting it in later stages of the viral life cycle. This study deals with identification of the potential natural molecule or its derivatives from MolPort Databank as SARS-CoV-2 spike receptor inhibitors using structure-based virtual screening followed by molecular dynamics simulation. On the basis of ADME properties, docking score, MMGBSAbinding energy, 150 ns molecular docking studies, and final molecular dynamics analysis, two natural compounds - 3 (MolPort-002-535-004) docking score -9.10 kcal mol-1 and 4 (MolPort-005-910-183) docking score -8.5 kcal mol-1, are selected as potential in-silico spike receptor inhibitors. Both hits are commercially available and can be further used for in-vitro and in-vivo studies. Findings of this study can facilitate rational drug design against SARS-CoV-2 spike receptor.
Collapse
Affiliation(s)
- Arkadeep Sarkar
- Department of Pharmacy, BCDA College of Pharmacy & Technology, Jessore Road South, Hridaypur, Kolkata, West Bengal 700127 India
| | - Debanjan Sen
- Department of Pharmacy, BCDA College of Pharmacy & Technology, Jessore Road South, Hridaypur, Kolkata, West Bengal 700127 India
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., 76130 San Pablo, Queretaro Mexico
| | | | - Sudhan Debnath
- Department of Chemistry, M. B. B. College, Agartala, Tripura 799004 India
| |
Collapse
|
19
|
Jia DX, Sun CY, Jin YT, Liu ZQ, Zheng YG, Li M, Wang HY, Chen DS. Properties of d-allulose 3-epimerase mined from Novibacillus thermophilus and its application to synthesis of d-allulose. Enzyme Microb Technol 2021; 148:109816. [PMID: 34116747 DOI: 10.1016/j.enzmictec.2021.109816] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Dong-Xu Jia
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Chen-Yi Sun
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yi-Ting Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| | - De-Shui Chen
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| |
Collapse
|