1
|
Cetinkaya A, Kaya SI, Ozcelikay G, Budak F, Ozkan SA. Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis. Crit Rev Anal Chem 2024; 54:1227-1242. [PMID: 35943520 DOI: 10.1080/10408347.2022.2109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Nowadays, the rapid improvements in the medical and pharmaceutical fields increase the diversity and use of drugs. However, problems such as the use of multiple or combined drugs in the treatment of diseases and insensible use of over-the-counter drugs have caused concerns about the side-effect profiles and therapeutic ranges of drugs and environmental contamination and pollution problems due to pharmaceuticals waste. Therefore, the analysis of drugs in various media such as biological, pharmaceutical, and environmental samples is an important topic of discussion. Electrochemical methods are advantageous for sensor applications due to their easy application, low cost, versatility, high sensitivity, and environmentally-friendliness. Carbon nanomaterials such as diamond-like carbon thin films, carbon nanotubes, carbon nanofibers, graphene oxide, and nanodiamonds are used to enhance the performance of the electrochemical sensors with catalytic effects. To further improve this effect, it is aimed to create hybrid platforms by using different carbon nanomaterials together or with materials such as conductive polymers and ionic liquids. In this review, the most used carbon nanoforms will be evaluated in terms of electrochemical characterizations and physicochemical properties. Furthermore, the effect of hybrid platforms developed in the most recent studies on electrochemical sensors will be examined and evaluated in terms of drug analysis studies in the last five years.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Godja NC, Munteanu FD. Hybrid Nanomaterials: A Brief Overview of Versatile Solutions for Sensor Technology in Healthcare and Environmental Applications. BIOSENSORS 2024; 14:67. [PMID: 38391986 PMCID: PMC10887000 DOI: 10.3390/bios14020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The integration of nanomaterials into sensor technologies not only poses challenges but also opens up promising prospects for future research. These challenges include assessing the toxicity of nanomaterials, scalability issues, and the seamless integration of these materials into existing infrastructures. Future development opportunities lie in creating multifunctional nanocomposites and environmentally friendly nanomaterials. Crucial to this process is collaboration between universities, industry, and regulatory authorities to establish standardization in this evolving field. Our perspective favours using screen-printed sensors that employ nanocomposites with high electrochemical conductivity. This approach not only offers cost-effective production methods but also allows for customizable designs. Furthermore, incorporating hybrids based on carbon-based nanomaterials and functionalized Mxene significantly enhances sensor performance. These high electrochemical conductivity sensors are portable, rapid, and well-suited for on-site environmental monitoring, seamlessly aligning with Internet of Things (IoT) platforms for developing intelligent systems. Simultaneously, advances in electrochemical sensor technology are actively working to elevate sensitivity through integrating nanotechnology, miniaturization, and innovative electrode designs. This comprehensive approach aims to unlock the full potential of sensor technologies, catering to diverse applications ranging from healthcare to environmental monitoring. This review aims to summarise the latest trends in using hybrid nanomaterial-based sensors, explicitly focusing on their application in detecting environmental contaminants.
Collapse
Affiliation(s)
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2–4 E. Drăgoi Str., 310330 Arad, Romania;
| |
Collapse
|
3
|
Umair M, Huma Zafar S, Cheema M, Usman M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119553. [PMID: 37976639 DOI: 10.1016/j.jenvman.2023.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major constraint to provide safe food to society. Cultivation of food crops on these soils, channels the HMs into the food chain and causes serious human health and socioeconomic problems. Multiple conventional and non-conventional remedial options are already in practice with variable success rates, but nanotechnology has proved its success due to higher efficiency. It also led the hypothesis to use hybrid nanoparticles (HNPs) with extended benefits to remediate the HMs and supplement nutrients to enhance the crop yield in the contaminated environments. Hybrid nanoparticles are defined as exclusive chemical conjugates of inorganic and/or organic nanomaterials that are combinations of two or more organic components, two or more inorganic components, or at least one of both types of components. HNPs of different elements like essential nutrients, beneficial nutrients and carbon-based nanoparticles are used for the remediation of metals contaminated soil and the production of metal free crops. Characterizing features of HNPs including particle size, surface area, reactivity, and solubility affect the efficacy of these HNPs in the contaminated environment. Hybrid nanoparticles have great potential to remove the HMs ions from soil solution and restrict their ingress into the root tissues. Furthermore, HNPs of essential nutrients not only compete with heavy metal uptake by plants but also fulfill the need of nutrients. This review provides a comprehensive overview of the challenges associated with application of HNPs in contaminated soils, environmental implications, their remediation ability, and factors affecting their dynamics in environmental matrices.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur, 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| | - Muhammad Usman
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
4
|
Abdel-Rahman RM, Abdel-Mohsen AM. Marine Biomaterials: Hyaluronan. Mar Drugs 2023; 21:426. [PMID: 37623707 PMCID: PMC10456333 DOI: 10.3390/md21080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges.
Collapse
Affiliation(s)
- Rasha M. Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| | - A. M. Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| |
Collapse
|
5
|
Guadagno L, Sorrentino A, Longo R, Raimondo M. Multifunctional Properties of Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Epoxy Nanocomposites. Polymers (Basel) 2023; 15:polym15102297. [PMID: 37242872 DOI: 10.3390/polym15102297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to formulate multifunctional structural nanocomposites tailored for aeronautic and aerospace applications. This work aims to demonstrate how the skillful combination of desired properties, such as good electrical, flame-retardant, mechanical, and thermal properties, is obtainable thanks to the advantages connected with nanoscale incorporations of nanosized CNTs with POSS. The special hydrogen bonding-based intermolecular interactions between the nanofillers have proved to be strategic in imparting multifunctionality to the nanohybrids. All multifunctional formulations are characterized by a Tg centered at values close to 260 °C, fully satisfying structural requirements. Infrared spectroscopy and thermal analysis confirm the presence of a cross-linked structure characterized by a high curing degree of up to 94% and high thermal stability. Tunneling atomic force microscopy (TUNA) allows to detect the map of the electrical pathways at the nanoscale of the multifunctional samples, highlighting a good dispersion of the carbon nanotubes within the epoxy resin. The combined action of POSS with CNTs has allowed to obtain the highest values of self-healing efficiency if compared to those measured for samples containing only POSS in the absence of CNTs.
Collapse
Affiliation(s)
- Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Andrea Sorrentino
- Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Previati n. 1/E, 23900 Lecco, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Kharlamova MV, Kramberger C. Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:640. [PMID: 36839009 PMCID: PMC9961505 DOI: 10.3390/nano13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This paper is dedicated to the discussion of applications of carbon material in electrochemistry. The paper starts with a general discussion on electrochemical doping. Then, investigations by spectroelectrochemistry are discussed. The Raman spectroscopy experiments in different electrolyte solutions are considered. This includes aqueous solutions and acetonitrile and ionic fluids. The investigation of carbon nanotubes on different substrates is considered. The optical absorption experiments in different electrolyte solutions and substrate materials are discussed. The chemical functionalization of carbon nanotubes is considered. Finally, the application of carbon materials and chemically functionalized carbon nanotubes in batteries, supercapacitors, sensors, and nanoelectronic devices is presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Materials Application (CEMEA) of Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
| | | |
Collapse
|
7
|
Pyrzynska K. Preconcentration and Removal of Pb(II) Ions from Aqueous Solutions Using Graphene-Based Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1078. [PMID: 36770084 PMCID: PMC9921202 DOI: 10.3390/ma16031078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 06/01/2023]
Abstract
Direct determination of lead trace concentration in the presence of relatively complex matrices is often a problem. Thus, its preconcentration and separation are necessary in the analytical procedures. Graphene-based nanomaterials have attracted significant interest as potential adsorbents for Pb(II) preconcentration and removal due to their high specific surface area, exceptional porosities, numerous adsorption sites and functionalization ease. Particularly, incorporation of magnetic particles with graphene adsorbents offers an effective approach to overcome the separation problems after a lead enrichment step. This paper summarizes the developments in the applications of graphene-based adsorbents in conventional solid-phase extraction column packing and its alternative approaches in the past 5 years.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
8
|
Oxygenated Hydrocarbons from Catalytic Hydrogenation of Carbon Dioxide. Catalysts 2023. [DOI: 10.3390/catal13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Once fundamental difficulties such as active sites and selectivity are fully resolved, metal-free catalysts such as 3D graphene or carbon nanotubes (CNT) are very cost-effective substitutes for the expensive noble metals used for catalyzing CO2. A viable method for converting environmental wastes into useful energy storage or industrial wealth, and one which also addresses the environmental and energy problems brought on by emissions of CO2, is CO2 hydrogenation into hydrocarbon compounds. The creation of catalytic compounds and knowledge about the reaction mechanisms have received considerable attention. Numerous variables affect the catalytic process, including metal–support interaction, metal particle sizes, and promoters. CO2 hydrogenation into different hydrocarbon compounds like lower olefins, alcoholic composites, long-chain hydrocarbon composites, and fuels, in addition to other categories, have been explained in previous studies. With respect to catalyst design, photocatalytic activity, and the reaction mechanism, recent advances in obtaining oxygenated hydrocarbons from CO2 processing have been made both through experiments and through density functional theory (DFT) simulations. This review highlights the progress made in the use of three-dimensional (3D) nanomaterials and their compounds and methods for their synthesis in the process of hydrogenation of CO2. Recent advances in catalytic performance and the conversion mechanism for CO2 hydrogenation into hydrocarbons that have been made using both experiments and DFT simulations are also discussed. The development of 3D nanomaterials and metal catalysts supported on 3D nanomaterials is important for CO2 conversion because of their stability and the ability to continuously support the catalytic processes, in addition to the ability to reduce CO2 directly and hydrogenate it into oxygenated hydrocarbons.
Collapse
|
9
|
Levitsky SG, Shunaev VV, Glukhova OE. A Hybrid Nanocomposite Based on the T-Shaped Carbon Nanotubes and Fullerenes as a Prospect Material for Triple-Value Memory Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8175. [PMID: 36431661 PMCID: PMC9693297 DOI: 10.3390/ma15228175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Relying on empirical and quantum chemical methods, a hybrid nanocomposite based on the T-shaped carbon nanotube (CNT) junction and internal fullerene C60 is proposed as a potential triple-value memory cell. The T-shaped CNT provides three potential wells where the internal fullerene can be located. The fullerene can move between these wells under the periodic external electric field, whose strength and frequency parameters are identified. The process of the fullerene's motion control corresponds to the memory cell write operation. The read operation can be realized by determining the fullerene's position inside the CNT by estimation of the charge transfer between a fullerene and the CNT's walls. Calculations took into account such external factors as temperature and air environment.
Collapse
Affiliation(s)
| | | | - Olga E. Glukhova
- Department of Physics, Saratov State University, 410012 Saratov, Russia
- Institute for Bionic Technologies and Engineering, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Nalbandian MJ, Kim S, Gonzalez-Ribot HE, Myung NV, Cwiertny DM. Recent advances and remaining barriers to the development of electrospun nanofiber and nanofiber composites for point-of-use and point-of-entry water treatment systems. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100204. [PMID: 37025391 PMCID: PMC10074328 DOI: 10.1016/j.hazadv.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we focus on electrospun nanofibers as a promising material alternative for the niche application of decentralized, point-of-use (POU) and point-of-entry (POE) water treatment systems. We focus our review on prior work with various formulations of electrospun materials, including nanofibers of carbon, pure metal oxides, functionalized polymers, and polymer-metal oxide composites, that exhibit analogous performance to media (e.g., activated carbon, ion exchange resins) commonly used in commercially available, certified POU/POE devices for contaminants including organic pollutants, metals (e.g., lead) and persistent oxyanions (e.g., nitrate). We then analyze the relevant strengths and remaining research and development opportunities of the relevant literature based on an evaluation framework that considers (i) performance comparison to commercial analogs; (ii) appropriate pollutant targets for POU/POE applications; (iii) testing in flow-through systems consistent with POU/POE applications; (iv) consideration of water quality effects; and (v) evaluation of material strength and longevity. We also identify several emerging issues in decentralized water treatment where nanofiber-based POU/POE devices could help meet existing needs including their use for treatment of uranium, disinfection, and in electrochemical treatment systems. To date, research has demonstrated promising material performance toward relevant targets for POU/POE applications, using appropriate aquatic matrices and considering material stability. To fully realize their promise as an emerging treatment technology, our analysis of the available literature reveals the need for more work that benchmarks nanofiber performance against established commercial analogs, as well as fabrication and performance validation at scales and under conditions simulating POU/POE water treatment.
Collapse
Affiliation(s)
- Michael J. Nalbandian
- Department of Civil Engineering and Construction Management, California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Humberto E. Gonzalez-Ribot
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556
| | - David M. Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| |
Collapse
|
11
|
Recent advances in applications of hybrid natural polymers as adsorbent for perfluorinated compounds removal – review paper. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Cirillo G, Curcio M, Madeo LF, Iemma F, De Filpo G, Hampel S, Nicoletta FP. Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field. Molecules 2021; 26:molecules26227001. [PMID: 34834096 PMCID: PMC8625859 DOI: 10.3390/molecules26227001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and qexp12 of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and qexp12 of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and qexp12 of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
- Correspondence: ; Tel.: +39-0984493208
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| | - Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (L.F.M.); (S.H.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (L.F.M.); (S.H.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| |
Collapse
|
13
|
Jain N, Gupta E, Kanu NJ. Plethora of Carbon Nanotubes Applications in Various Fields – A State-of-the-Art-Review. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.1940752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nidhi Jain
- Department of Engineering Science, Bharati Vidyapeeth College of Engineering, Lavale, Pune, India
| | - Eva Gupta
- Department of Electrical Engineering, ASET, Amity University, Noida, India
- Department of Electrical Engineering, TSSM’s Bhivrabai Sawant College of Engineering and Research, Pune, Maharashtra, India
| | - Nand Jee Kanu
- Department of Mechanical Engineering, S. V. National Institute of Technology, Surat, India
- Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| |
Collapse
|
14
|
David ME, Ion RM, Grigorescu RM, Iancu L, Holban AM, Nicoara AI, Alexandrescu E, Somoghi R, Ganciarov M, Vasilievici G, Gheboianu AI. Hybrid Materials Based on Multi-Walled Carbon Nanotubes and Nanoparticles with Antimicrobial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1415. [PMID: 34072004 PMCID: PMC8228541 DOI: 10.3390/nano11061415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
In this study, multi-walled carbon nanotubes (MWCNTs) were decorated with different types of nanoparticles (NPs) in order to obtain hybrid materials with improved antimicrobial activity. Structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, environmental scanning electron microscopy/energy-dispersive X-ray spectroscopy and the Brunauer-Emmett-Teller technique were used in order to investigate the decoration of the nanotubes with NPs. Analysis of the decorated nanotubes showed a narrow size distribution of NPs, 7-13 nm for the nanotubes decorated with zinc oxide (ZnO) NPs, 15-33 nm for the nanotubes decorated with silver (Ag) NPs and 20-35 nm for the nanotubes decorated with hydroxyapatite (HAp) NPs, respectively. The dispersion in water of the obtained nanomaterials was improved for all the decorated MWCNTs, as revealed by the relative absorbance variation in time of the water-dispersed nanomaterials. The obtained nanomaterials showed a good antimicrobial activity; however, the presence of the NPs on the surface of MWCNTs improved the nanocomposites' activity. The presence of ZnO and Ag nanoparticles enhanced the antimicrobial properties of the material, in clinically relevant microbial strains. Our data proves that such composite nanomaterials are efficient antimicrobial agents, suitable for the therapy of severe infection and biofilms.
Collapse
Affiliation(s)
- Madalina Elena David
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
- Doctoral School of Materials Engineering Department, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Rodica-Mariana Ion
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
- Doctoral School of Materials Engineering Department, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Ramona Marina Grigorescu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
| | - Lorena Iancu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
| | | | - Adrian Ionut Nicoara
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Elvira Alexandrescu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
| | - Raluca Somoghi
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
| | - Mihaela Ganciarov
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 060021 Bucharest, Romania; (R.-M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.); (M.G.); (G.V.)
| | - Anca Irina Gheboianu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania;
| |
Collapse
|
15
|
Hagarová I, Nemček L. Application of Metallic Nanoparticles and Their Hybrids as Innovative Sorbents for Separation and Pre-concentration of Trace Elements by Dispersive Micro-Solid Phase Extraction: A Minireview. Front Chem 2021; 9:672755. [PMID: 34017823 PMCID: PMC8129025 DOI: 10.3389/fchem.2021.672755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
It is indisputable that separation techniques have found their rightful place in current analytical chemistry, considering the growing complexity of analyzed samples and (ultra)trace concentration levels of many studied analytes. Among separation techniques, extraction is one of the most popular ones due to its efficiency, simplicity, low cost and short processing times. Nonetheless, research interests are directed toward the enhancement of performance of these procedures in terms of selectivity. Dispersive solid phase extraction (DSPE) represents a novel alternative to conventional solid phase extraction (SPE) which not only delivers environment-friendly extraction with less solvent consumption, but also significantly improves analytical figures of merit. A miniaturized modification of DSPE, known as dispersive micro-solid phase extraction (DMSPE), is one of the most recent trends and can be applied for the extraction of wide variety of analytes from various liquid matrices. While DSPE procedures generally use sorbents of different origin and sizes, in DMSPE predominantly nanostructured materials are required. The aim of this paper is to provide an overview of recently published original papers on DMSPE procedures in which metallic nanoparticles and hybrid materials containing metallic particles along with other (often carbon-based) constituent(s) at the nanometer level have been utilized for separation and pre-concentration of (ultra)trace elements in liquid samples. The studies included in this review emphasize the great analytical potential of procedures producing reliable results in the analysis of complex liquid matrices, where the detection of target analyte is often complicated by the presence of interfering substances.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucia Nemček
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
16
|
Abdulaeva IA, Birin KP, Polivanovskaia DA, Gorbunova YG, Tsivadze AY. Functionalized heterocycle-appended porphyrins: catalysis matters. RSC Adv 2020; 10:42388-42399. [PMID: 35516736 PMCID: PMC9057987 DOI: 10.1039/d0ra08603g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
The scope and limitations of the condensation of labile 2,3-diaminoporphyrin derivatives with aromatic aldehydes to provide functionalized imidazole- and pyrazine-appended porphyrins were investigated in detail. The presence of an acidic catalyst in the reaction was found to be a tool that allows the reaction path to be switched. The influence of the electronic origin of the substituents in the carbonyl components of the condensation on the yields and selectivity of the reaction was revealed. Metal-promoted cross-coupling transformations were found to be convenient for the further targeted construction of functional derivatives based on the prepared bromo-substituted pyrazinoporphyrins. Overall, these strategies provide a versatile technique for the elaboration of a variety of functionalized heterocycle-appended porphyrins for further application in the development of hybrid materials.
Collapse
Affiliation(s)
- Inna A Abdulaeva
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
| | - Kirill P Birin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
| | - Daria A Polivanovskaia
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
| | - Yulia G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry RAS Leninsky pr., 31 Moscow 119991 Russia
| | - Aslan Yu Tsivadze
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry RAS Leninsky pr., 31 Moscow 119991 Russia
| |
Collapse
|