1
|
Qi YK, Tang X, Wei NN, Pang CJ, Du SS, Wang KW. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci 2022; 28:e3428. [PMID: 35610021 DOI: 10.1002/psc.3428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Discovering new antibiotics with novel chemical scaffolds and antibacterial mechanisms presents a challenge for medicinal scientists worldwide as the ever-increasing bacterial resistance poses a serious threat to human health. A new cyclic peptide-based antibiotic termed teixobactin was discovered from a screen of uncultured soil bacteria through iChip technology in 2015. Teixobactin exhibits excellent antibacterial activity against all the tested gram-positive pathogens and Mycobacterium tuberculosis, including drug-resistant strains. Given that teixobactin targets the highly conserved lipid II and lipid III, which induces the simultaneous inhibition of both peptidoglycan and teichoic acid synthesis, the emergence of resistance is considered to be rather difficult. The novel structure, potent antibacterial activity, and highly conservative targets make teixobactin a promising lead compound for further antibiotic development. This review provides a comprehensive treatise on the advances of teixobactin in the areas of discovery processes, antibacterial activity, mechanisms of action, chemical synthesis, and structural optimizations. The synthetic methods for the key building block l-allo-End, natural teixobactin, representative teixobactin analogues, as well as the structure-activity relationship studies will be highlighted and discussed in details. Finally, some insights into new trends for the generation of novel teixobactin analogues and tips for future work and directions will be commented.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ning-Ning Wei
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Cheng-Jian Pang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ke Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Rezende SB, Oshiro KGN, Júnior NGO, Franco OL, Cardoso MH. Advances on chemically modified antimicrobial peptides for generating peptide antibiotics. Chem Commun (Camb) 2021; 57:11578-11590. [PMID: 34652348 DOI: 10.1039/d1cc03793e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are pinpointed as promising molecules against antibiotic-resistant bacterial infections. Nevertheless, there is a discrepancy between the AMP sequences generated and the tangible outcomes in clinical trials. AMPs' limitations include enzymatic degradation, chemical/physical instability and toxicity toward healthy human cells. These factors compromise AMPs' bioavailability, resulting in limited therapeutic potential. To overcome such obstacles, peptidomimetic approaches, including glycosylation, PEGylation, lipidation, cyclization, grafting, D-amino acid insertion, stapling and dendrimers are promising strategies to fine-tune AMPs. Here we focused on chemical modifications applied for AMP optimization and how they have helped these peptide-based antibiotic candidates' design and translational potential.
Collapse
Affiliation(s)
- Samilla B Rezende
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Nelson G O Júnior
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| | - Octávio L Franco
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil.,Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| | - Marlon H Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil.,Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| |
Collapse
|
3
|
Hermant Y, Palpal-Latoc D, Kovalenko N, Cameron AJ, Brimble MA, Harris PWR. The Total Chemical Synthesis and Biological Evaluation of the Cationic Antimicrobial Peptides, Laterocidine and Brevicidine. JOURNAL OF NATURAL PRODUCTS 2021; 84:2165-2174. [PMID: 34338512 DOI: 10.1021/acs.jnatprod.1c00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance is a significant threat to public health systems worldwide, prompting immediate attention to develop new therapeutic agents with novel mechanisms of action. Recently, two new cationic non-ribosomal peptides (CNRPs), laterocidine and brevicidine, were discovered from Brevibacillus laterosporus through a global genome-mining approach. Both laterocidine and brevicidine exhibit potent antimicrobial activity toward Gram-negative bacteria, including difficult-to-treat Pseudonomas aeruginosa and colistin-resistant Escherichia coli, and a low risk of resistance development. Herein, we report the first total syntheses of laterocidine and brevicidine via an efficient and high-yielding combination of solid-phase synthesis and solution-phase macrolactamization. The crucial depsipeptide bond of the macrolactone rings of laterocidine and brevicidine was established on-resin between the side-chain hydroxy group of Thr9 with Alloc-Gly-OH or Alloc-Ser(tBu)-OH, respectively. A conserved glycine residue within the lactone macrocycle is exploited for the initial immobilization onto the hyper acid-labile 2-chlorotrityl chloride resin, subsequently enabling an efficient solution-phase macrocyclization to yield laterocidine and brevicidine in 36% and 10% overall yields, respectively (with respect to resin loading). A biological evaluation against both Gram-positive and Gram-negative bacteria demonstrated that synthetic laterocidine and brevicidine possessed a potent and selective antimicrobial activity toward Gram-negative bacteria, in accordance with the isolated compounds.
Collapse
Affiliation(s)
- Yann Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Dennise Palpal-Latoc
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Nadiia Kovalenko
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
5
|
Hanna CC, Hermant YO, Harris PWR, Brimble MA. Discovery, Synthesis, and Optimization of Peptide-Based Antibiotics. Acc Chem Res 2021; 54:1878-1890. [PMID: 33750106 DOI: 10.1021/acs.accounts.0c00841] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rise of multidrug resistant bacteria has significantly compromised our supply of antibiotics and poses an alarming medical and economic threat to society. To combat this problem, it is imperative that new antibiotics and treatment modalities be developed, especially those toward which bacteria are less capable of developing resistance. Peptide natural products stand as promising candidates to meet this need as bacterial resistance is typically slow in response to their unique modes of action. They also have additional benefits including favorable modulation of host immune responses and often possess broad-spectrum activity against notoriously treatment resistant bacterial biofilms. Moreover, nature has provided a wealth of peptide-based natural products from a range of sources, including bacteria and fungi, which can be hijacked in order to combat more dangerous clinically relevant infections.This Account highlights recent advances in the total synthesis and development of a range of peptide-based natural product antibiotics and details the medicinal chemistry approaches used to optimize their activity.In the context of antibiotics with potential to treat Gram-positive bacterial infections, this Account covers the synthesis and optimization of the natural products daptomycin, glycocin F, and alamethicin. In particular, the reported synthesis of daptomycin highlights the utility of on-resin ozonolysis for accessing a key kynurenine residue from the canonical amino acid tryptophan. Furthermore, the investigation into glycocin F analogues uncovered a potent lead compound against Lactobacillus plantarum that bears a non-native thioacetal linkage to a N-acetyl-d-glucosamine (GlcNAc) sugar, which is otherwise O-linked in its native form.For mycobacterial infections, this Account covers the synthesis and optimization of teixobactin, callyaerin A, lassomycin, and trichoderin A. The synthesis of callyaerin A, in particular, highlighted the importance of a (Z)-2,3-diaminoacrylamide motif for antimicrobial activity against Mycobacterium tuberculosis, while the synthesis of trichoderin A highlighted the importance of (R)-stereoconfiguration in a key 2-amino-6-hydroxy-4-methyl-8-oxodecanoic acid (AHMOD) residue.Lastly, this Account covers lipopeptide antibiotics bearing activity toward Gram-negative bacterial infections, namely, battacin and paenipeptin C. In both cases, optimization of the N-terminal lipid tails led to the identification of analogues with potent activity toward Escherichia coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of Chemical Sciences The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Yann O. Hermant
- School of Chemical Sciences The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
7
|
Abstract
Lipidation of polypeptides with a fatty acid to form N-linked lipopeptides can be a time consuming process due to the need to mask other reactive function groups present on the side chains of amino acids. Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology enables the direct lipidation of unprotected peptides containing a free thiol group to afford S-lipidated lipopeptides. A generalized procedure for the synthesis of S-lipopeptides is described which facilities rapid preparation of tens of analogs of lipopeptides from a single thiolated polypeptide precursor.
Collapse
Affiliation(s)
- Victor Yim
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|