1
|
Wu J, Li J, Cheng M, Li L, Yan R, Yue J. Water-soluble near-infrared AgInS 2 quantum dots for Ca 2+ detection and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124859. [PMID: 39047666 DOI: 10.1016/j.saa.2024.124859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Calcium ions (Ca2+) are key players in intracellular signaling as second messengers and play a pivotal role in various physiological processes. In this study, near-infrared water-soluble AgInS2 quantum dots (AIS QDs) for Ca2+ detection were synthesized by a one-step hydrothermal method. The fluorescence quantum yield (PL QY) of the quantum dots was as high as 23.99 %. With low cytotoxicity and good fluorescence properties, as well as short reaction time, the ternary AIS QDs have excellent synthesis efficiency and quantum yield, which are advantageous for Ca2+ detection and bioimaging applications. The fluorescence quenching of the quantum dots showed a clear linear relationship with calcium ion concentration in the range of 0-250 μM (detection limit: 0.65 μM). Confocal imaging experiments demonstrate the excellent biofluorescence imaging capability of AIS QDs. By tuning the Ag/In molar ratio, AIS QDs can achieve fluorescence emission in the near-infrared wavelength band (620-700 nm), and the near-infrared fluorescence imaging has deeper tissue penetration, less tissue absorption and photodamage, and lower interference of spontaneous fluorescence, which further expands the potential of QDs for bioimaging applications.
Collapse
Affiliation(s)
- Jie Wu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jinhua Li
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, China.
| | - Mingming Cheng
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China.
| | - Juan Yue
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
2
|
Barhoum A, Alhashemi Y, Ahmed YM, Rizk MS, Bechelany M, Abdel-Haleem FM. Innovations in ion-selective optodes: a comprehensive exploration of modern designs and nanomaterial integration. Front Bioeng Biotechnol 2024; 12:1397587. [PMID: 39224192 PMCID: PMC11367105 DOI: 10.3389/fbioe.2024.1397587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, ion-selective optodes (ISOs) have remarkably progressed, driven by innovative modern designs and nanomaterial integration. This review explored the development of modern ISO by describing state-of-the-art strategies to improve their sensitivity, selectivity, and real-time monitoring capacity. The review reported the traditional membrane based-optodes, and investigated the latest research, current design principles, and the use of essential components, such as ionophores, indicator dyes, polymer membranes, and nanomaterials, in ISO fabrication. Special attention was given to nanomaterials (e.g., quantum dots, polymer dots, nanospheres, nanorods and nanocapsules) and particularly on how rare earth elements can further enhance their potential. It also described innovative ISO designs, including wearable optodes, smartphone-based optodes, and disposable paper-based optodes. As the pursuit of highly sensitive, selective, and adaptable ion sensing devices continues, this summary of the current knowledge sets the stage for upcoming innovations and applications in different domains (pharmaceutical formulations, medical diagnosis, environmental monitoring, and industrial applications).
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Yaser Alhashemi
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Ministry of Interior, Farwaniya, Kuwait
| | - Yomna M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud S Rizk
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, Montpellier, France
- Gulf University for Science and Technology, GUST, Hawally, Kuwait
| | - Fatehy M Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Feng X, Ren Z, Cao Y, Sui W, Wang F, Wu J, Zhou J, Zhang F, Zhou W, Shen C. Hydrogel binding sodium alginate based optical fiber surface plasmon resonance for calcium ion trace detection. Anal Chim Acta 2024; 1316:342870. [PMID: 38969414 DOI: 10.1016/j.aca.2024.342870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
A plasmonic tilted fiber Bragg grating (TFBG)-based sensor for the detection of calcium ion (Ca2+) was proposed and demonstrated experimentally. Hydrogel material was synthesized by utilizing hydrogen bond recombination between cellulose nanocrystals (CNC) and polyvinyl alcohol (PVA). Sodium alginate (SA) was incorporated into this hydrogel material, resulting in a composite membrane with specific binding properties for Ca2+. The membrane was applied as a coating on the surface of a gold-coated TFBG. The CNC/PVA-SA modified gold on the TFBG surface enhanced the localized refractive index changes caused by variations of Ca2+ concentrations. The experimental results demonstrated an impressive limit of detection (LOD) of approximately 0.025 fM, which is five orders of magnitude better than the current LODs of similar Ca2+ sensors. And the proposed Ca2+ sensor exhibited a wide dynamic range of 10-16 M to 10-6 M.
Collapse
Affiliation(s)
- Xijie Feng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Ziqiao Ren
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yunjie Cao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wenbo Sui
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Fuxiang Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jun Wu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Fanli Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wenjun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Changyu Shen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
4
|
Pathiriparambath MSR, Joseph M, Manog M, Thomas V, Tharayil H, Nair LV. Glutamic Acid Modified Gold Nanorod Sensor for the Detection of Calcium ions in Neuronal Cells. Chembiochem 2024; 25:e202400009. [PMID: 38545627 DOI: 10.1002/cbic.202400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/10/2024] [Indexed: 04/18/2024]
Abstract
Calcium (Ca2+) ions play a crucial role in the functioning of neurons, governing various aspects of neuronal activity such as rapid modulation and alterations in gene expression. Ca2+ signaling has a significant impact on the development of diseases and the impairment of neuronal functions. Herein, the study reports a Ca2+ ion sensor in neuronal cells using a gold nanorod. The gold nanorod (GA-GNR) conjugated glutamic acid developed in the study was used as a nano-bio probe for the experimental and in vitro detection of calcium. The nanosensor is colloidally stable, preserves plasmonic properties, and shows good viability in neuronal cells, as well as promoting neuron cell line growth. The cytotoxicity and cell penetration of the nanosensor are studied using Raman spectroscopy, brightfield and darkfield microscopy imaging, and MTT assays. The quantification of Ca2+ ions in neuronal cells is determined by monitoring the surface plasmon resonance (SPR) of the GA-GNR. The change in the intensity profile in the presence of Ca2+ incubated neurons was effectively used to develop a portable prototype of an optical Ca2+ sensor, proposing it as a tool for neurodegenerative disease diagnosis and neuromodulation evaluation.
Collapse
Affiliation(s)
| | - Merin Joseph
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Mithun Manog
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Vinoy Thomas
- Department of Mechanical and Materials Engineering, University Alabama at Birmingham, USA
| | - Hanas Tharayil
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Lakshmi V Nair
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
- Department of Mechanical and Materials Engineering, University Alabama at Birmingham, USA
| |
Collapse
|
5
|
Yin S, Yang H, Wu Y, Wang Z, Yu C, Tang Y, Wang G. Recent advances in biological molecule detection based on a three-dimensional graphene structure. Analyst 2024; 149:1364-1380. [PMID: 38314837 DOI: 10.1039/d3an01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Graphene has become an attractive material in the field of electrochemical detection owing to its unique electrical properties. Although the simple stacking structures of two-dimensional (2D) graphene sheets can provide excellent detection properties, a macroscopic three-dimensional (3D) structure needs to be constructed to enhance its functional properties. Graphene with a 3D structure has elegant functions, unlike graphene with a 2D structure. These properties include a large specific surface area, easy loading of nanomaterials with electrocatalytic and redox functions, and so on. Herein, we outline the preparation methods (self-assembly, chemical vapor deposition, templates, and 3D printing) for 3D graphene structures for obtaining excellent detection performance and applications in detecting biological molecules, bacteria, and cells. Furthermore, this review focuses on the improvement of the detection performance and enhancement of the applicability of graphene-based electrochemical sensors. We hope that this article will provide a reference for the future development of electrochemical sensors based on 3D graphene composites.
Collapse
Affiliation(s)
- Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Hanyu Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China.
| |
Collapse
|
6
|
Salek-Maghsoodi M, Golsanamlu Z, Sadeghi-Mohammadi S, Gazizadeh M, Soleymani J, Safaralizadeh R. Simple fluorescence chemosensor for the detection of calcium ions in water samples and its application in bio-imaging of cancer cells. RSC Adv 2022; 12:31535-31545. [PMID: 36380939 PMCID: PMC9631868 DOI: 10.1039/d2ra04815a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 12/27/2023] Open
Abstract
This article describes the design, synthesis and characterization of a sensor suitable for practical measurement of ionized calcium in water samples and cancer cells. Calcium is an important ion in living organs and works as a messenger in several cellular functions. A lack of Ca ions interrupts the immune system and can lead to several diseases. A novel magnetic-polydopamine nanoparticle (PDNP)/rhodamine B (RhB)/folic acid (FA) nanoparticle was developed for the determination of calcium ions in MCF 7 cell lysates and water samples. Furthermore, the produced nanoparticle was employed for bioimaging of folate receptor (FR)-overexpressed cancer cells. This nanoprobe displayed a bright photoluminescence emission at 576 nm under an excitation wavelength of 420 nm. In the presence of calcium ions, the fluorescence emission of the MNPs-PDNPs/RhB/FA probe was proportionally decreased from 20 ng mL-1 to 100 ng mL-1 and 0.5 μg mL-1 to 20 μg mL-1 with a lower limit of quantification (LLOQ) of about 20 ng mL-1. The developed sensor showed a low-interference manner in the presence of possible coexistence interfering ions. In addition, this nanomaterial showed excellent biocompatibility with favorable differentiation ability to attach to the FR-positive cancer cells. The MNPs-PDNPs/RhB/FA nanoparticle has been utilized for bioimaging of the MCF 7 cell with favorable differentiation ability.
Collapse
Affiliation(s)
- Maral Salek-Maghsoodi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Zahra Golsanamlu
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Gazizadeh
- Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, Tabriz University Tabriz Iran
| |
Collapse
|
7
|
Ma Q, Mu Y, Gong L, Zhu C, Di S, Cheng M, Gao J, Shi J, Zhang L. Manganese-based nanoadjuvants for enhancement of immune effect of DNA vaccines. Front Bioeng Biotechnol 2022; 10:1053872. [PMID: 36338143 PMCID: PMC9633283 DOI: 10.3389/fbioe.2022.1053872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
As a highly pathogenic avian influenza virus, influenza A (H5N1) has been reported to infect humans, posing a major threat to both poultry industry and public health. It is an urgent need to develop a kind of effective vaccine to prevent death and reduce the incidence rate of H5N1 avian influenza. Compared with traditional inactivated or attenuated vaccines, deoxyribonucleic (DNA) vaccines have the advantages of continuously expressing plasmid-encoded antigens and inducing humoral and cellular immunity. However, the immune effect of DNA vaccines is limited to its poor immunogenicity. Using of nanoadjuvants with DNA vaccines holds a great promise to increase the transfection efficiency and immunogenicity of DNA vaccines. In this study, we developed a nano co-delivery system with a manganese-based liposome as adjuvant for delivery of a DNA vaccine. This system has been found to protect DNA vaccine, enhance phagocytosis as well as promote activation of antigen-presenting cells (APCs) and immune cells in draining lymph nodes. In addition, the effect of this nanovaccine has been evaluated in mouse models, where it induces highly potent hemagglutination inhibitory antibody (HI) and IgG antibodies, while activating both humoral and cellular immunity in the host. Overall, this strategy opens up a new prospect for manganese nanoadjuvants in increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Science, Northwest A & F University, Xianyang, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Chuanda Zhu
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shiming Di
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinming Gao
- College of Chemistry and Pharmacy, Northwest A & F University, Xianyang, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Jihai Shi
- Department of Dermatology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| |
Collapse
|
8
|
Revesz IA, Hickey SM, Sweetman MJ. Metal ion sensing with graphene quantum dots: detection of harmful contaminants and biorelevant species. J Mater Chem B 2022; 10:4346-4362. [PMID: 35616384 DOI: 10.1039/d2tb00408a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Graphene quantum dots (GQDs) are attractive materials for use as highly selective and sensitive chemical sensors, owing to their simple preparation and affordability. GQDs have been successfully deployed as sensors for toxic metal ions, which is a significant issue due to the ever-increasing environmental contamination from agricultural and industrial activities. Despite the success of GQDs in this area, the mechanisms which underpin GQD-metal ion specificity are rarely explored. This lack of information can result in difficulties when attempting to replicate published procedures and can limit the judicious design of new highly selective GQD sensors. Furthermore, there is a dearth of GQD examples which selectively detect biologically relevant alkali and alkaline earth metals. This review will present the current state of GQDs as metal ion sensors for harmful contaminants, highlighting and discussing the discrepancies that exist in the proposed mechanisms regarding metal ion selectivity. The emerging field of GQD sensors for biorelevant metal ion species will also be reviewed, with a perspective to the future of this highly versatile material.
Collapse
Affiliation(s)
- Isabella A Revesz
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Shane M Hickey
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Martin J Sweetman
- Clinical and Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
9
|
Han M, Karatum O, Nizamoglu S. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20468-20490. [PMID: 35482955 PMCID: PMC9100496 DOI: 10.1021/acsami.1c25009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Collapse
Affiliation(s)
- Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
10
|
|
11
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
12
|
Wang H, Luo Q, Zhao Y, Nan X, Zhang F, Wang Y, Wang Y, Hua D, Zheng S, Jiang L, Yang L, Xiong B. Electrochemical device based on nonspecific DNAzyme for the high-accuracy determination of Ca 2+ with Pb 2+ interference. Bioelectrochemistry 2020; 140:107732. [PMID: 33465700 DOI: 10.1016/j.bioelechem.2020.107732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Calcium is one of the most abundant and indispensable elements in biology, as it is a vital component of nerves, bones, and muscles and maintains the excitability of normal neuromuscular muscles. However, it may be harmful to the human body and even damage the organs if the calcium content exceeds the standard value by several times. To evaluate the level of calcium ions (Ca2+), an electrochemical biosensor (FET/SWNTs/Cazyme) was developed using a nonspecific DNAzyme with high stability, which combined the unique advantage of field-effect transistors and single-walled carbon nanotubes, while being easy-to-use and having excellent sensitivity. The incubation time and voltage after optimization were 15 min and +0.02 V. The nonspecific DNAzyme-based biosensor was sensitive to Ca2+, but it was also interfered with by Pb2+, which affected the detection accuracy. To solve this shortcoming, an electrochemical device was proposed, in which FET/SWNTs/Cazyme combined with other specific biosensors for Pb2+, and then established some data processing models were established through support vector machine regression (SVMR) and artificial neural network fitting (ANNF). For the optimal SVMR, the electrochemical device can determine the Ca2+ concentration in the range of 7.5-1000 μM with a detection limit of 5.48 μM. Finally, the prepared electrochemical device was employed to detect the Ca2+ in different milk and water samples.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qingyao Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yaping Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shanshan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Linshu Jiang
- School of Animal Science and Technology, Beijing Agricultural University, Beijing Key Laboratory of Dairy Nutrition, Beijing 102206, PR China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|