1
|
Rosendo LM, Rosado T, Zandonai T, Rincon K, Peiró AM, Barroso M, Gallardo E. Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy. Int J Mol Sci 2024; 25:5925. [PMID: 38892112 PMCID: PMC11173075 DOI: 10.3390/ijms25115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This review emphasises the importance of opioid monitoring in clinical practice and advocates for a personalised approach based on pharmacogenetics. Beyond effectively managing pain, meticulous oversight is required to address concerns about side effects, specially due to opioid-crisis-related abuse and dependence. Various monitoring techniques, along with pharmacogenetic considerations, are critical for personalising treatment and optimising pain relief while reducing misuse and addiction risks. Future perspectives reveal both opportunities and challenges, with advances in analytical technologies holding promise for increasing monitoring efficiency. The integration of pharmacogenetics has the potential to transform pain management by allowing for a precise prediction of drug responses. Nevertheless, challenges such as prominent pharmacogenetic testing and guideline standardisation persist. Collaborative efforts are critical for transforming scientific advances into tangible improvements in patient care. Standardised protocols and interdisciplinary collaboration are required to ensure consistent and evidence-based opioid monitoring. Future research should look into the long-term effects of opioid therapy, as well as the impact of genetic factors on individual responses, to help guide personalised treatment plans and reduce adverse events. Lastly, embracing innovation and collaboration can improve the standard of care in chronic pain management by striking a balance between pain relief and patient safety.
Collapse
Affiliation(s)
- Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB), Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Thomas Zandonai
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain; (T.Z.); (K.R.); (A.M.P.)
- Addiction Science Lab, Department of Psychology and Cognitive Science, University of Trento, 38060 Trento, Italy
- Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernandez University of Elche, 03550 Alicante, Spain
| | - Karem Rincon
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain; (T.Z.); (K.R.); (A.M.P.)
- Clinical Pharmacology Unit, Department of Health of Alicante, University General Hospital Dr. Balmis, 03010 Alicante, Spain
| | - Ana M. Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain; (T.Z.); (K.R.); (A.M.P.)
- Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernandez University of Elche, 03550 Alicante, Spain
- Clinical Pharmacology Unit, Department of Health of Alicante, University General Hospital Dr. Balmis, 03010 Alicante, Spain
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal;
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB), Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
2
|
Cheng JYK, Hui JWS, Chan WS, So MH, Hong YH, Leung WT, Ku KW, Yeung HS, Lo KM, Fung KM, Ip CY, Dao KL, Cheung BKK. Interpol review of toxicology 2019-2022. Forensic Sci Int Synerg 2022; 6:100303. [PMID: 36597440 PMCID: PMC9799715 DOI: 10.1016/j.fsisyn.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jack Yuk-ki Cheng
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | | - Wing-sum Chan
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Man-ho So
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Yau-hin Hong
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Wai-tung Leung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Ka-wai Ku
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Hoi-sze Yeung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kam-moon Lo
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kit-mai Fung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Chi-yuen Ip
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kwok-leung Dao
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | |
Collapse
|
3
|
Wille SMR, Desharnais B, Pichini S, Trana AD, Busardò FP, Wissenbach DK, Peters FT. Liquid Chromatography High Resolution Mass Spectrometry in Forensic Toxicology: What Are the Specifics of Method Development, Validation and Quality Assurance for Comprehensive Screening Approaches? Curr Pharm Des 2022; 28:1230-1244. [PMID: 35619258 DOI: 10.2174/1381612828666220526152259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
The use of High Resolution Mass Spectrometry (HRMS) has increased over the past decade in clinical and forensic toxicology, especially for comprehensive screening approaches. Despite this, few guidelines of this field have specifically addressed HRMS issues concerning compound identification, validation, measurement uncertainty and quality assurance. To fully implement this technique, certainly in an era in which the quality demands for laboratories are ever increasing due to various norms (e.g. the International Organization for Standardization's ISO 17025), these specific issues need to be addressed. This manuscript reviews 26 HRMS-based methods for qualitative systematic toxicological analysis (STA) published between 2011 and 2021. Key analytical data such as samples matrices, analytical platforms, numbers of analytes and employed mass spectral reference databases/libraries as well as the studied validation parameters are summarized and discussed. The article further includes a critical review of targeted and untargeted data acquisition approaches, available HRMS reference databases and libraries as well as current guidelines for HRMS data interpretation with a particular focus on identification criteria. Moreover, it provides an overview on current recommendations for the validation and determination measurement uncertainty of qualitative methods. Finally, the article aims to put forward suggestions for method development, compound identification, validation experiments to be performed, and adequate determination of measurement uncertainty for this type of wide-range qualitative HRMS-based methods.
Collapse
Affiliation(s)
- Sarah M R Wille
- Unit Toxicology, National Institute of Criminalistics and Criminology (NICC), Brussels, Belgium
| | - Brigitte Desharnais
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Annagiulia Di Trana
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
4
|
Survey and Synthesis of State of the Art in Driver Monitoring. SENSORS 2021; 21:s21165558. [PMID: 34450999 PMCID: PMC8402294 DOI: 10.3390/s21165558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
Road vehicle accidents are mostly due to human errors, and many such accidents could be avoided by continuously monitoring the driver. Driver monitoring (DM) is a topic of growing interest in the automotive industry, and it will remain relevant for all vehicles that are not fully autonomous, and thus for decades for the average vehicle owner. The present paper focuses on the first step of DM, which consists of characterizing the state of the driver. Since DM will be increasingly linked to driving automation (DA), this paper presents a clear view of the role of DM at each of the six SAE levels of DA. This paper surveys the state of the art of DM, and then synthesizes it, providing a unique, structured, polychotomous view of the many characterization techniques of DM. Informed by the survey, the paper characterizes the driver state along the five main dimensions—called here “(sub)states”—of drowsiness, mental workload, distraction, emotions, and under the influence. The polychotomous view of DM is presented through a pair of interlocked tables that relate these states to their indicators (e.g., the eye-blink rate) and the sensors that can access each of these indicators (e.g., a camera). The tables factor in not only the effects linked directly to the driver, but also those linked to the (driven) vehicle and the (driving) environment. They show, at a glance, to concerned researchers, equipment providers, and vehicle manufacturers (1) most of the options they have to implement various forms of advanced DM systems, and (2) fruitful areas for further research and innovation.
Collapse
|
5
|
Géhin C, Holman SW. Advances in high-resolution mass spectrometry applied to pharmaceuticals in 2020: A whole new age of information. ANALYTICAL SCIENCE ADVANCES 2021; 2:142-156. [PMID: 38716455 PMCID: PMC10989654 DOI: 10.1002/ansa.202000149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2024]
Abstract
Continuous improvements in mass spectrometry (MS) have resulted in the widespread availability and adoption of high-resolution mass spectrometry (HRMS) across laboratories worldwide. The capabilities and the associated advantages of HRMS make it an invaluable analytical tool for analyte characterization, screening, and quantification methodologies for a wide scope of applications across pharmaceutical development. These applications include drug discovery, product characterizations of both small molecules and novel drug modalities, in vitro and in vivo metabolism studies, post-approval quality control, and pharmacovigilance. This review gives an overview of the current capabilities of HRMS and its pharmaceutical applications in 2020, and provides a perspective on the future of HRMS within the pharmaceutical industry.
Collapse
Affiliation(s)
- Caroline Géhin
- Chemical DevelopmentPharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldUK
| | - Stephen W. Holman
- Chemical DevelopmentPharmaceutical Technology & DevelopmentOperations, AstraZenecaMacclesfieldUK
| |
Collapse
|