1
|
Torres-Davila FE, Chagoya KL, Blanco EE, Shahzad S, Shultz-Johnson LR, Mogensen M, Gesquiere A, Jurca T, Rochdi N, Blair RG, Tetard L. Room temperature 3D carbon microprinting. Nat Commun 2024; 15:2745. [PMID: 38553437 PMCID: PMC10980711 DOI: 10.1038/s41467-024-47076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Manufacturing custom three-dimensional (3D) carbon functional materials is of utmost importance for applications ranging from electronics and energy devices to medicine, and beyond. In lieu of viable eco-friendly synthesis pathways, conventional methods of carbon growth involve energy-intensive processes with inherent limitations of substrate compatibility. The yearning to produce complex structures, with ultra-high aspect ratios, further impedes the quest for eco-friendly and scalable paths toward 3D carbon-based materials patterning. Here, we demonstrate a facile process for carbon 3D printing at room temperature, using low-power visible light and a metal-free catalyst. Within seconds to minutes, this one-step photocatalytic growth yields rod-shaped microstructures with aspect ratios up to ~500 and diameters below 10 μm. The approach enables the rapid patterning of centimeter-size arrays of rods with tunable height and pitch, and of custom complex 3D structures. The patterned structures exhibit appealing luminescence properties and ohmic behavior, with great potential for optoelectronics and sensing applications, including those interfacing with biological systems.
Collapse
Affiliation(s)
- Fernand E Torres-Davila
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Katerina L Chagoya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Emma E Blanco
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Saqib Shahzad
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | | | - Mirra Mogensen
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andre Gesquiere
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Titel Jurca
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
- Renewable Energy and Chemical Transformations (REACT) Cluster, University of Central Florida, Orlando, FL, USA
| | - Nabil Rochdi
- Laboratory of Innovative Materials, Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Marrakesh, Morocco
- Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Richard G Blair
- Renewable Energy and Chemical Transformations (REACT) Cluster, University of Central Florida, Orlando, FL, USA.
- Florida Space Institute, University of Central Florida, Orlando, FL, USA.
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA.
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Li D, Feng Y, Li F, Tang J, Hua T. Carbon Fibers for Bioelectrochemical: Precursors, Bioelectrochemical System, and Biosensors. ADVANCED FIBER MATERIALS 2023; 5:699-730. [PMID: 36818429 PMCID: PMC9923679 DOI: 10.1007/s42765-023-00256-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/02/2023] [Indexed: 05/27/2023]
Abstract
Abstract Carbon fibers (CFs) demonstrate a range of excellent properties including (but not limited to) microscale diameter, high hardness, high strength, light weight, high chemical resistance, and high temperature resistance. Therefore, it is necessary to summarize the application market of CFs. CFs with good physical and chemical properties stand out among many materials. It is believed that highly fibrotic CFs will play a crucial role. This review first introduces the precursors of CFs, such as polyacrylonitrile, bitumen, and lignin. Then this review introduces CFs used in BESs, such as electrode materials and modification strategies of MFC, MEC, MDC, and other cells in a large space. Then, CFs in biosensors including enzyme sensor, DNA sensor, immune sensor and implantable sensor are summarized. Finally, we discuss briefly the challenges and research directions of CFs application in BESs, biosensors and more fields. Highlights CF is a new-generation reinforced fiber with high hardness and strength.Summary precursors from different sources of CFs and their preparation processes.Introduction of the application and modification methods of CFs in BESs and biosensor.Suggest the challenges in the application of CFs in the field of bio-electrochemistry.Propose the prospective research directions for CFs. Graphical abstract
Collapse
Affiliation(s)
- Donghao Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Yimeng Feng
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| |
Collapse
|
3
|
Development of Porous-Polyacrylonitrile-Based Fibers Using Nanocellulose Additives as Precursor for Carbon Fiber Manufacturing. Polymers (Basel) 2023; 15:polym15030565. [PMID: 36771866 PMCID: PMC9920794 DOI: 10.3390/polym15030565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Cellulose is a renewable and environmentally friendly raw material that has an important economic and technical impact in several applications. Recently, nanocellulose (NC) presented a promising road to support the manufacturing of functional carbon fibers (CFs), which are considered superior materials for several applications because of their outstanding properties. However, the smooth and limited effective surface areas make CFs virtually useless in some applications, such as energy storage. Therefore, strategies to increase the porosity of CFs are highly desirable to realize their potential. Within this article, we present an approach that focuses on the designing of porous CF precursors using polyacrilonitrile (PAN) and NC additives using a wet spinning method. To enhance the porosity, two jet stretching (50% and 100%) and four NC additive amounts (0 wt.%, 0.1 wt.%, 0.4 wt.% and 0.8 wt.%) have been applied and investigated. In comparison with the reference PAN fibers (without NC additives and stretching), the results showed an increase in specific surface area from 10.45 m2/g to 138.53 m2/g and in total pore volume from 0.03 cm3/g to 0.49 cm3/g. On the other hand, mechanical properties have been affected negatively by NC additives and the stretching process. Stabilization and carbonization processes could be applied in a future study to support the production of multifunctional porous CF.
Collapse
|