1
|
Hu Y, Chen Y, Wei W, Liu H. Preparation of biomass-derived red emission carbon dots for real-time and long-term tracking of cells and tumor growth. RSC Adv 2024; 14:37104-37113. [PMID: 39569107 PMCID: PMC11575181 DOI: 10.1039/d4ra05018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Effective real-time cell tracking and tumor growth monitoring are important for precise diagnosis and therapy of tumors and can also be used to monitor biological processes. In this study, a facile, green microwave method was developed to synthesize biomass-derived red emission carbon dots (RCDs) using the ethanolic extract of holly leaves. Owing to the advantages of the prepared RCDs, such as near infrared emission, stability, strong fluorescence intensity, excellent biocompatibility, penetration of thick tissues, avoiding background fluorescence interference, and improvement of the signal-to-noise ratio of biological imaging, they were applied to cell imaging, real-time cell tracking and tumor growth monitoring. Experimental results revealed that the RCDs could present strong red fluorescence emission when they entered the cells. The labeled cells still emitted red fluorescence after 13 generations of passage and could monitor tumor growth in real-time for more than 18 days. These results indicated that RCDs could be used as effective long-term near-infrared fluorescent imaging probes for cells and tumors, presenting broad application prospects in image-guided therapy.
Collapse
Affiliation(s)
- Yuefang Hu
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University Hezhou Guangxi 542899 China
| | - Yuxin Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University Hezhou Guangxi 542899 China
| | - Wenwang Wei
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University Hezhou Guangxi 542899 China
| | - Hanfu Liu
- College of Pharmacy, Guilin Medical University Guilin Guangxi 541004 China
| |
Collapse
|
2
|
Shan CW, Chen Z, Han GC, Feng XZ, Kraatz HB. Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta 2024; 271:125638. [PMID: 38237279 DOI: 10.1016/j.talanta.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein that has many important physiological functions, including transportation, immunosuppression, and induction of apoptosis by T lymphocytes. AFP is closely related to the development of hepatocellular carcinoma and many kinds of tumors, all of which can show high concentrations, so it is used as a positive test indicator for many kinds of tumors. This paper reviews recent advances in the detection of the tumor marker AFP based on three immuno-biosensors: electrochemical (EC), photoelectrochemical (PEC), and electrochemical luminescence (ECL). The electrodes are modified by different materials or homemade composites, different signaling molecules are selected as single probes or dual probes for the detection of AFP. The detection limit was as low as 3 fg/mL, which indicated that the AFP immunosensor had achieved highly sensitive detection. In addition, we also reviewed and summarized the current development status and application prospect of AFP immunoelectrochemical sensors. There are not too many researches on immunosensors based on dual-signal ratios, and the commonly used probes are methylene blue (MB) and ferrocene (Fc). It would be more innovative to have more novel signaling molecules as probes to prepare dual-signal ratio sensors.
Collapse
Affiliation(s)
- Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
3
|
Jiang S, Chen Y, Liang J, Xiao H, Lin M, Cui X, Zhao S. An AgPd NP-based lateral flow immunoassay for simultaneous detection of glycocholic acid and alpha-fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1508-1514. [PMID: 38372146 DOI: 10.1039/d3ay02286b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality globally, ranking third in cancer deaths. Early diagnosis of HCC markers is imperative for effective prognosis and treatment. This study explores the utility of glycocholic acid (GCA) and alpha-fetoprotein (AFP) as biomarkers for liver diseases, with a specific focus on their simultaneous detection for enhanced diagnostic and prognostic capabilities. Harnessing the benefits of lateral flow immunoassay (LFIA), such as operational simplicity, speed, and accuracy, we engineered AgPd nanocomposites with antibodies targeting GCA and AFP. Under the optimized conditions, the visual detection limit for GCA was established at 50 ng mL-1 and the cut-off value at 104 ng mL-1. And for AFP, the visual detection limit was 0.1 ng mL-1 and the cut-off value was 500 ng mL-1. The accuracy and feasibility of the strips were validated through the detection of 39 actual serum samples. The results highlight the potential of LFIA as a rapid and effective tool for clinical diagnosis. The developed LFIA method not only demonstrates accuracy and feasibility but also presents a promising avenue for the early diagnosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shilin Jiang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yaqiong Chen
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jinhui Liang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Huanxin Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
4
|
Ju Y, Yang Y, Tang Q, Wang M, Zeng Y, Zhang Z, Zhai Y, Wang H, Li L. Fluorometric detection of alpha-fetoprotein based on the use of a novel organic compound with AIE activity and aptamer-modified magnetic microparticles. Anal Chim Acta 2023; 1278:341692. [PMID: 37709445 DOI: 10.1016/j.aca.2023.341692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Liver cancer is one of the most common cancers in the world, and it seriously threatens human life and health. Alpha-fetoprotein (AFP), as a carcinogenic glycoprotein, is an important serum marker for detecting liver cancer. Therefore, the accurate and sensitive determination of AFP is crucial for the early diagnosis and treatment of liver cancer. To this end, a label-free fluorescence aptasensor for detecting AFP based on the use of a novel organic Compound D with an aggregation-induced emission activity and aptamer-modified magnetic microparticles was constructed. RESULTS Compound D could combine with the complementary short chain of the aptamer (CSC-Apt) of AFP to form the D/CSC-Apt complex and realize the fluorescence enhancement of Compound D. Then, magnetic particles modified by the Apt of AFP (Apt-Fe3O4) were prepared. When AFP (or nontarget substance) and D/CSC-Apt were successively added to the Apt-Fe3O4 solution, Apt-Fe3O4 selectively bound to AFP or the D/CSC-Apt complex. Magnetic separation technology showed the changes in the fluorescence intensity of the supernatant. The research results revealed a good linear relationship between the changes in the fluorescence intensity of the supernatant and concentration of AFP within the concentration range of 10-10000 pg mL-1. The proposed aptasensor could achieve high-sensitivity and high-specificity detection of AFP, and its limit of detection was 3 pg mL-1 (S/N = 3). SIGNIFICANCE AND NOVELTY The sensor combines the advantages of high selectivity of Apt, high sensitivity of fluorescence analysis, AIE effect and good water solubility of Compound D, and rapid separation using magnetic separation technology. And it can be directly used for the detection of AFP in actual serum samples with high accuracy, whereas most of the methods reported in the literature can only detect AFP in spiked serum samples.
Collapse
Affiliation(s)
- Yulong Ju
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Qiukai Tang
- Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing, 314031, Zhejiang, China
| | - Mengqi Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Zulei Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yunyun Zhai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Hailong Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
5
|
Olorundare FOG, Sipuka DS, Sebokolodi TI, Kodama T, Arotiba OA, Nkosi D. An electrochemical immunosensor for an alpha-fetoprotein cancer biomarker on a carbon black/palladium hybrid nanoparticles platform. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3577-3585. [PMID: 37458385 DOI: 10.1039/d3ay00702b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The early detection of cancer is a key step in cancer survival. Thus, there is a need to develop low-cost technologies, such as electrochemical immunosensor technologies, for timely screening and diagnostics. The discovery of alpha-feto protein (AFP) as a tumour-associated antigen lends AFP as a biomarker for cancer detection and monitoring. Thus, immunosensors can be developed to target AFP in cancer diagnostics. Hence, we report the application of a hybrid nanocomposite of carbon black nanoparticles (CBNPs) and palladium nanoparticles (PdNPs) as a platform for the electrochemical immunosensing of cancer biomarkers. The hybrid carbon-metal nanomaterials were immobilised by using the drop-drying and electrodeposition technique on a glassy carbon electrode, followed by the immobilisation of the anti-AFP to fabricate an immunosensor. The nanoparticles were characterised with electron microscopy, voltammetry, and electrochemical impedance spectroscopy (EIS). Square wave voltammetry (SWV) and EIS were used to study the immunosensor signal toward the bio-recognition of the AFP cancer biomarker. The hybrid nanoparticles enhanced the immunosensor performance. A linear detection range from 0.005 to 1000 ng mL-1 with low detection limits of 0.0039 ng mL-1 and 0.0131 ng mL-1 were calculated for SWV and EIS, respectively. The immunosensor demonstrated good stability, reproducibility, and selectivity. Its real-life application potential was tested with detection in human serum matrix.
Collapse
Affiliation(s)
- Foluke O G Olorundare
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
| | - Dimpo S Sipuka
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Tsholofelo I Sebokolodi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Duduzile Nkosi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| |
Collapse
|
6
|
Ailioaie LM, Ailioaie C, Litscher G. Synergistic Nanomedicine: Photodynamic, Photothermal and Photoimmune Therapy in Hepatocellular Carcinoma: Fulfilling the Myth of Prometheus? Int J Mol Sci 2023; 24:ijms24098308. [PMID: 37176014 PMCID: PMC10179579 DOI: 10.3390/ijms24098308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with high morbidity and mortality, which seriously threatens the health and life expectancy of patients. The traditional methods of treatment by surgical ablation, radiotherapy, chemotherapy, and more recently immunotherapy have not given the expected results in HCC. New integrative combined therapies, such as photothermal, photodynamic, photoimmune therapy (PTT, PDT, PIT), and smart multifunctional platforms loaded with nanodrugs were studied in this review as viable solutions in the synergistic nanomedicine of the future. The main aim was to reveal the latest findings and open additional avenues for accelerating the adoption of innovative approaches for the multi-target management of HCC. High-tech experimental medical applications in the molecular and cellular research of photosensitizers, novel light and laser energy delivery systems and the features of photomedicine integration via PDT, PTT and PIT in immuno-oncology, from bench to bedside, were introspected. Near-infrared PIT as a treatment of HCC has been developed over the past decade based on novel targeted molecules to selectively suppress cancer cells, overcome immune blocking barriers, initiate a cascade of helpful immune responses, and generate distant autoimmune responses that inhibit metastasis and recurrences, through high-tech and intelligent real-time monitoring. The process of putting into effect new targeted molecules and the intelligent, multifunctional solutions for therapy will bring patients new hope for a longer life or even a cure, and the fulfillment of the myth of Prometheus.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, 8053 Graz, Austria
| |
Collapse
|
7
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
8
|
Kayani FB, Rafique S, Akram R, Hussain M, Bashir S, Nasir R, Khan JS. A simple, sensitive, label-free electrochemical immunosensor based on the chitosan-coated silver/cerium oxide (CS@Ag/CeO 2) nanocomposites for the detection of alpha-fetoprotein (AFP). NANOTECHNOLOGY 2023; 34:265501. [PMID: 36996770 DOI: 10.1088/1361-6528/acc8d8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Metal oxide-based sensors have the benefit of inexpensive, quick response, and high sensitivity in detecting specific biological species. In this article, a simple electrochemical immunosensor was fabricated using antibody-chitosan coated silver/cerium oxide (Ab-CS@Ag/CeO2) nanocomposites on a gold electrode for sensitive alpha-fetoprotein (AFP) diagnosis in human serum samples. Successfully synthesis of AFP antibody-CS@Ag/CeO2conjugates was confirmed through Fourier transform infrared spectra of the prototype. The amine coupling bond chemistry was then used to immobilize the resultant conjugate on a gold electrode surface. It was observed that the interaction of the synthesized Ab-CS@Ag/CeO2nanocomposites with AFP prevented an electron transfer and reduced the voltammetric Fe(CN)63-/4-peak current, which was proportional to the amount of AFP. The linear ranges of AFP concentration were found from 10-12-10-6g.ml-1. The limit of detection was calculated using the calibration curve and came out to be 0.57 pg.ml-1. The designed label-free immunosensor successfully detected AFP in human serum samples. As a result, the resulting immunosensor is a promising sensor plate form for AFP detection and could be used in clinical bioanalysis.
Collapse
Affiliation(s)
| | - Saima Rafique
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Rizwan Akram
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Mozaffar Hussain
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Shazia Bashir
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Rubina Nasir
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Jan Sher Khan
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| |
Collapse
|
9
|
Chang Y, Wu X, Lu S, Du J, Long Y, Zhu Y, Qin H. Engineered procyanidin-Fe nanoparticle alleviates intestinal inflammation through scavenging ROS and altering gut microbiome in colitis mice. Front Chem 2023; 11:1089775. [PMID: 37065822 PMCID: PMC10090317 DOI: 10.3389/fchem.2023.1089775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease characterized by inflammation, intestinal barrier injury, and imbalance of gut microbiota. Excess accumulation of reactive oxygen species (ROS) is closely correlated with the development and reoccurrence of IBD. Previous researches demonstrate that procyanidin, as a natural antioxidant, exhibits strong ability of eliminating ROS, thus showing good therapeutic effects in the inflammation-related diseases. Non-etheless, its poor stability and solubility always limits the therapeutic outcomes. Here, we typically designed an antioxidant coordination polymer nanoparticle using the engineering of procyanidin (Pc) and free iron (Fe), named Pc-Fe nanozyme, for effectively scavenging ROS and further inhibiting inflammation while altering the gut microbiome for the treatment of colitis. Furthermore, in vitro experiments uncover that Pc-Fe nanoparticles exert strong multi biomimic activities, including peroxidase, and glutathione peroxidase, for the scavenging of ROS and protecting cells from oxidative injury. In addition, the colon accumulation of Pc-Fe nanozyme effectively protects the intestinal mucosa from oxidative damage while significantly downregulates pro-inflammatory factors, repairs the intestinal barriers and alternates gut microbiome after orally administrated in sodium dextran sulfate (DSS) induced colitis mice. The results collectively illustrate that the multienzyme mimicking Pc-Fe nanozyme owns high potential for treating IBD through scavenging ROS, inhibiting inflammation, repairing gut barriers and alternating gut microbiome, which further promising its clinical translation on IBD treatment and other ROS induced intestinal diseases.
Collapse
Affiliation(s)
- Yongliang Chang
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiawei Wu
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Shengwei Lu
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jiahao Du
- Medical School of Nantong University, Nantong, China
| | - Yixiu Long
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| | - Yefei Zhu
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| | - Huanlong Qin
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
- Medical School of Nantong University, Nantong, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| |
Collapse
|
10
|
An innovative wireless electrochemical card sensor for field-deployable diagnostics of Hepatitis B surface antigen. Sci Rep 2023; 13:3523. [PMID: 36864072 PMCID: PMC9981757 DOI: 10.1038/s41598-023-30340-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
A wireless-based detection utilizing an innovative electrochemical card (eCard) sensor controlled by a smartphone was developed for targeting Hepatitis B surface antigen (HBsAg). A simple label-free electrochemical platform allows a convenient operation for point-of-care diagnosis. A disposable screen-printed carbon electrode was modified straightforwardly layer-by-layer with chitosan followed by glutaraldehyde, allowing a simple but effective, reproducible, and stable method for covalently immobilizing antibodies. The modification and immobilization processes were verified by electrochemical impedance spectroscopy and cyclic voltammetry. The smartphone-based eCard sensor was used to quantify HBsAg by measuring the change in current response of the [Fe(CN)6]3-/4- redox couple before and after the presence of HBsAg. Under the optimal conditions, the linear calibration curve for HBsAg was found to be 10-100,000 IU/mL with a detection limit of 9.55 IU/mL. The HBsAg eCard sensor was successfully applied to detect 500 chronic HBV-infected serum samples with satisfactory results, demonstrating the excellent applicability of this system. The sensitivity and specificity of this sensing platform were found to be 97.75% and 93%, respectively. As illustrated, the proposed eCard immunosensor offered a rapid, sensitive, selective, and easy-to-use platform for healthcare providers to rapidly determine the infection status of HBV patients.
Collapse
|
11
|
Liu G, Liu J, Zhou H, Wang H. Recent advances in nanotechnology-enhanced biosensors for α-fetoprotein detection. Mikrochim Acta 2022; 190:3. [PMID: 36469175 DOI: 10.1007/s00604-022-05592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
α-Fetoprotein (AFP) is a kind of fetal protein that is related to tumor, the increasing concentration of which gives birth to a large variety of diseases, such as liver cancer. Therefore, the detection method with super sensitivity, high selectivity, and less time consumption under trace concentrations in early stage of diseases is becoming a necessity. In recent years, nanomaterials have been regarded as significant resources for the exploration of efficient biosensors with high sensitivity, selectivity, speed, as well as simple process, due to their excellent optical, electrical, and chemical properties. In this paper, we reviewed the research progress of AFP biosensors with enhanced sensitivity and selectivity by nanoparticles. Representative examples have also been displayed in this paper to expound the nanotechnologies utilized in the early detection of AFP. Furthermore, challenges of the clinical application of AFP biosensors based on nanotechnology have been elaborated, as well as the development opportunity in this field in the future. This review provides a comprehensive overview on the various nano-biosensor for AFP detection based on functional nanotechnology.
Collapse
Affiliation(s)
- Gengjun Liu
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Hong Zhou
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China. .,Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
12
|
Huang J, Xie Z, Li M, Luo S, Deng X, Xie L, Fan Q, Zeng T, Zhang Y, Zhang M, Wang S, Xie Z, Li D. An Enzyme-Free Sandwich Amperometry-Type Immunosensor Based on Au/Pt Nanoparticle-Functionalized Graphene for the Rapid Detection of Avian Influenza Virus H9 Subtype. NANOSCALE RESEARCH LETTERS 2022; 17:110. [PMID: 36404373 PMCID: PMC9676155 DOI: 10.1186/s11671-022-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Avian influenza virus H9 subtype (AIV H9) has contributed to enormous economic losses. Effective diagnosis is key to controlling the spread of AIV H9. In this study, a nonenzymatic highly electrocatalytic material was prepared using chitosan (Chi)-modified graphene sheet (GS)-functionalized Au/Pt nanoparticles (GS-Chi-Au/Pt), followed by the construction of a novel enzyme-free sandwich electrochemical immunosensor for the detection of AIV H9 using GS-Chi-Au/Pt and graphene-chitosan (GS-Chi) nanocomposites as a nonenzymatic highly electrocatalytic material and a substrate material to immobilize capture antibodies (avian influenza virus H9-monoclonal antibody, AIV H9/MAb), respectively. GS, which has a large specific surface area and many accessible active sites, permitted multiple Au/Pt nanoparticles to be attached to its surface, resulting in substantially improved conductivity and catalytic ability. Au/Pt nanoparticles can provide modified active sites for avian influenza virus H9-polyclonal antibody (AIV H9/PAb) immobilization as signal labels. Upon establishing the electrocatalytic activity of Au/Pt nanoparticles on graphene towards hydrogen peroxide (H2O2) reduction for signal amplification and optimizing the experimental parameters, we developed an AIV H9 electrochemical immunosensor, which showed a wide linear range from 101.37 EID50 mL-1 to 106.37 EID50 mL-1 and a detection limit of 100.82 EID50 mL-1. This sandwich electrochemical immunosensor also exhibited high selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China.
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| |
Collapse
|
13
|
Chanarsa S, Jakmunee J, Ounnunkad K. A sandwich-like configuration with a signal amplification strategy using a methylene blue/aptamer complex on a heterojunction 2D MoSe 2/2D WSe 2 electrode: Toward a portable and sensitive electrochemical alpha-fetoprotein immunoassay. Front Cell Infect Microbiol 2022; 12:916357. [PMID: 36389169 PMCID: PMC9646986 DOI: 10.3389/fcimb.2022.916357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/26/2022] [Indexed: 09/29/2023] Open
Abstract
Liver cancer is one of the most common global health problems that features a high mortality rate. Alpha-fetoprotein (AFP) is a potential liver cancer biomarker for the diagnosis of liver cancer. The quantitative detection of AFP at an ultratrace level has important medical significance. Using the reaction of the antibody-antigen pair in an immunosensor enables the sensitive and selective AFP assay. Finding a strategy in signal generation and amplification is challenging to fabricate new sensitive electrochemical immunosensors for AFP detection. This study demonstrates the construction of a simple, reliable, and label-free immunosensor for the detection of AFP on a smart phone. Exfoliated two-dimensional (2D) molybdenum diselenide (MoSe2) and 2D tungsten diselenide (WSe2) were employed to modify the disposable screen-printed carbon electrode (SPCE) to use as the electrochemical platform, which is affixed to a small potentiostat connected to a smart phone. The modified electrode offers antibody immobilization and allows detection of AFP via an immunocomplex forming a sandwich-like configuration with the AFP-corresponding aptamer. A heterojunction 2D MoSe2/2D WSe2 composite improves the SPCE's reactivity and provides a large surface area and good adsorption capacity for the immobilizing antibodies. The signal generation for the immunosensor is from the electrochemical response of methylene blue (MB) intercalating into the aptamer bound on the electrode. The response for the proposed sandwich-like immunosensor is proportional to the AFP concentration (1.0-50,000 pg ml-1). The biosensor has potential for the development of a simple and robust point-of-care diagnostic platform for the clinical diagnosis of liver cancer, achieving a low limit of detection (0.85 pg ml-1), high sensitivity, high selectivity, good stability, and excellent reproducibility.
Collapse
Affiliation(s)
- Supakeit Chanarsa
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Vargas E, Aiello EM, Ben Hassine A, Ruiz-Valdepeñas Montiel V, Pinsker JE, Church MM, Laffel LM, Doyle FJ, Patti ME, Dassau E, Wang J. Concept of the "Universal Slope": Toward Substantially Shorter Decentralized Insulin Immunoassays. Anal Chem 2022; 94:9217-9225. [PMID: 35715001 DOI: 10.1021/acs.analchem.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Decentralized sensing of analytes in remote locations is today a reality. However, the number of measurable analytes remains limited, mainly due to the requirement for time-consuming successive standard additions calibration used to address matrix effects and resulting in greatly delayed results, along with more complex and costly operation. This is particularly challenging in commonly used immunoassays of key biomarkers that typically require from 60 to 90 min for quantitation based on two standard additions, hence hindering their implementation for rapid and routine diagnostic applications, such as decentralized point-of-care (POC) insulin testing. In this work we have developed and demonstrated the theoretical framework for establishing a universal slope for direct calibration-free POC insulin immunoassays in serum samples using an electrochemical biosensor (developed originally for extended calibration by standard additions). The universal slope is presented as an averaged slope constant, relying on 68 standard additions-based insulin determinations in human sera. This new quantitative analysis approach offers reliable sample measurement without successive standard additions, leading to a dramatically simplified and faster assay (30 min vs 90 min when using 2 standard additions) and greatly reduced costs, without compromising the analytical performance while significantly reducing the analyses costs. The substantial improvements associated with the new universal slope concept have been demonstrated successfully for calibration-free measurements of serum insulin in 30 samples from individuals with type 1 diabetes using meticulous statistical analysis, supporting the prospects of applying this immunoassay protocol to routine decentralized POC insulin testing.
Collapse
Affiliation(s)
- Eva Vargas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Eleonora M Aiello
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States.,Sansum Diabetes Research Institute, Santa Barbara, California 93105, United States
| | - Amira Ben Hassine
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Jordan E Pinsker
- Sansum Diabetes Research Institute, Santa Barbara, California 93105, United States
| | - Mei Mei Church
- Sansum Diabetes Research Institute, Santa Barbara, California 93105, United States
| | - Lori M Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States.,Sansum Diabetes Research Institute, Santa Barbara, California 93105, United States
| | - Mary-Elizabeth Patti
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States.,Sansum Diabetes Research Institute, Santa Barbara, California 93105, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022. [PMID: 35072456 DOI: 10.1021/acs.analchem.1c04282/suppl_file/ac1c04282_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biomolecular contents of extracellular vesicles, such as exosomes, have been shown to be crucial in intercellular communication and disease propagation. As a result, there has been a recent surge in the exploration of novel biosensing platforms that can sensitively and specifically detect exosomal content such as proteins and nucleic acids, with a view toward application in diagnostic assays. Here, we demonstrate dual-mode and label-free detection of plasma exosomes using an electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). The platform adopts a direct immunosensing approach to effectively capture exosomes via their surface protein expression of CD63. By combining QCM-D with a tandem in situ electrochemical impedance spectroscopy measurement, we are able to demonstrate relationships between mass, viscoelasticity and impedance inducing properties of each functional layer and analyte. In addition to lowering the limit of detection (by a factor of 2-4) to 6.71 × 107 exosome-sized particles (ESP) per mL in 25% v/v serum, the synergy between dissipation and impedance response introduces improved sensing specificity by offering further distinction between soft and rigid analytes, thereby promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
16
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022; 94:2465-2475. [PMID: 35072456 PMCID: PMC9096790 DOI: 10.1021/acs.analchem.1c04282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
biomolecular contents of extracellular vesicles, such as exosomes,
have been shown to be crucial in intercellular communication and disease
propagation. As a result, there has been a recent surge in the exploration
of novel biosensing platforms that can sensitively and specifically
detect exosomal content such as proteins and nucleic acids, with a
view toward application in diagnostic assays. Here, we demonstrate
dual-mode and label-free detection of plasma exosomes using an electrochemical
quartz crystal microbalance with dissipation monitoring (EQCM-D).
The platform adopts a direct immunosensing approach to effectively
capture exosomes via their surface protein expression of CD63. By
combining QCM-D with a tandem in situ electrochemical impedance spectroscopy
measurement, we are able to demonstrate relationships between mass,
viscoelasticity and impedance inducing properties of each functional
layer and analyte. In addition to lowering the limit of detection
(by a factor of 2–4) to 6.71 × 107 exosome-sized
particles (ESP) per mL in 25% v/v serum, the synergy between dissipation
and impedance response introduces improved sensing specificity by
offering further distinction between soft and rigid analytes, thereby
promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
17
|
Rong S, Zou L, Zhu Y, Zhang Z, Liu H, Zhang Y, Zhang H, Gao H, Guan H, Dong J, Guo Y, Liu F, Li X, Pan H, Chang D. 2D/3D material amplification strategy for disposable label-free electrochemical immunosensor based on rGO-TEPA@Cu-MOFs@SiO2@AgNPs composites for NMP22 detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Yin B, Qian C, Wang S, Wan X, Zhou T. A Microfluidic Chip-Based MRS Immunosensor for Biomarker Detection via Enzyme-Mediated Nanoparticle Assembly. Front Chem 2021; 9:688442. [PMID: 34124008 PMCID: PMC8193930 DOI: 10.3389/fchem.2021.688442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 01/29/2023] Open
Abstract
Conventional immunoassay methods have their common defects, such as tedious processing steps and inadequate sensitivity, in detecting whole blood. To overcome the above problems, we report a microfluidic chip-based magnetic relaxation switching (MRS) immunosensor via enzyme-mediated nanoparticles to simplify operation and amplify the signal in detecting whole blood samples. In the silver mirror reaction with catalase (CAT) as the catalyst, H2O2 can effectively control the production of Ag NPs. The amount of Ag NPs formed further affects the degree of aggregation of magnetic nanoparticles (MNPS), which gives rise to the changes of transverse relaxation time (T2). Both sample addition and reagent reaction are carried out in the microfluidic chip, thereby saving time and reagent consumption. We also successfully apply the sensor to detect alpha-fetoprotein (AFP) in real samples with a satisfied limit of detection (LOD = 0.56 ng/ml), which is superior to the conventional ELISA.
Collapse
Affiliation(s)
- Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Changcheng Qian
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, China
| |
Collapse
|
19
|
Rong S, Zou L, Li Y, Guan Y, Guan H, Zhang Z, Zhang Y, Gao H, Yu H, Zhao F, Pan H, Chang D. An ultrasensitive disposable sandwich-configuration electrochemical immunosensor based on OMC@AuNPs composites and AuPt-MB for alpha-fetoprotein detection. Bioelectrochemistry 2021; 141:107846. [PMID: 34087545 DOI: 10.1016/j.bioelechem.2021.107846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/20/2023]
Abstract
Early finding and diagnosis are critical for prevention and treatment of hepatocellular carcinoma (HCC). Alpha-fetoprotein (AFP) is a typical biomarker of HCC. Since AFP level can reflect the severity of HCC, it is essential to ensure the accurate detection of AFP. In this study, through a combination of the advantages exhibited by ordered mesoporous carbon (OMC)@gold nanoparticles (AuNPs) composites and AuPt-methylene blue (AuPt-MB), a disposable ultrasensitive sandwich-configuration electrochemical immunosensor for determination of AFP was designed. Characterized by excellent conductivity, highly ordered pore distribution and great surface area, OMC can be effective in promoting electron transfer and loading a large number of AuNPs. In the meantime, AuNPs can also immobilize AFP-Ab1 through Au-N bonds. As a new redox-active species, rod-like AuPt-MB demonstrates high conductivity, uniform morphology and excellent biocompatibility, which makes it capable not only to fix AFP-Ab2, but also to release electrochemical signals. A wide linearity of 10 fg mL-1-100 ng mL-1 and a low detection limit of 3.33 fg mL-1 (S/N = 3) were obtained. Moreover, the proposed immunosensor exhibited acceptable selectivity, high stability and reproducibility. The excellent performance in detecting serum samples endows the proposed immunosensor with broad prospects of extensive application in the detection of disease biomarkers.
Collapse
Affiliation(s)
- Shengzhong Rong
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China; Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Yang Li
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Guan
- Heilongjiang Nursing College, Harbin, China
| | - Huilin Guan
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Ze Zhang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Yingcong Zhang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Hongmin Gao
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Hongwei Yu
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Fuyang Zhao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Dong Chang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|