1
|
Chatterjee A, Narayanan S, Thorat S, Malik AJ, Ambhore MD, Narayanan A, Sihag AK, Santhosh Babu S, Lahiri M, Hazra P. Multifunctional luminogens with synergy of aggregation-induced delayed fluorescence, two-photon absorption and photocurrent generation. Chem Commun (Camb) 2024. [PMID: 39714956 DOI: 10.1039/d4cc05113k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In this study, we investigated the aggregation-induced delayed fluorescence (AIDF) properties of three luminogens - TN, TA, and TP. Our comprehensive theoretical analysis reveals a significant reduction in the ΔEST in their aggregated or solid-state, activating TADF, on a ∼μs time-scale. Additionally, these luminogens demonstrate two-photon excited anti-Stokes photoluminescence emission and improved photocurrent generation, attributed to their strong charge transfer characteristics and longer singlet exciton lifetimes.
Collapse
Affiliation(s)
- Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India.
| | - Sundaravalli Narayanan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India.
| | - Sachin Thorat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India.
- Innovation Campus Mumbai, BASF Chemicals India Pvt. Ltd., Plot No. 12, TTC Area, Thane Belapur Road, Turbhe, Navi Mumbai, 400705, Maharashtra, India
| | - Ajay J Malik
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India
| | - Madan D Ambhore
- Department of Chemistry, Yeshwant Mahavidyalaya Nanded, Nanded, PIN-431602, Maharashtra, India
| | - Aswini Narayanan
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr Homi Bhabha Road, Pune-411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Anil Kumar Sihag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India.
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr Homi Bhabha Road, Pune-411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India.
| |
Collapse
|
2
|
Dong YX, Gao LX, Cao Q, Cao ZT, Gan SY, Li J, Zhu YL, Zhou YB, Zhang C, Wang WL. Synthesis, Fluorescence, and Bioactivity of Novel Isatin Derivatives. J Phys Chem B 2024; 128:6123-6133. [PMID: 38875519 DOI: 10.1021/acs.jpcb.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 μM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 μM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.
Collapse
Affiliation(s)
- Yi-Xin Dong
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Cao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Zi-Tong Cao
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Ya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| |
Collapse
|
3
|
Yan X, Zhang C, Gao LX, Liu MM, Yang YT, Yu LJ, Zhou YB, Milaneh S, Zhu YL, Li J, Wang WL. Novel imidazo[1,2,4] triazole derivatives: Synthesis, fluorescence, bioactivity for SHP1. Eur J Med Chem 2024; 265:116027. [PMID: 38128236 DOI: 10.1016/j.ejmech.2023.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 μM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 μM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.
Collapse
Affiliation(s)
- Xue Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Min Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Ting Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Jie Yu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; Higher Institute of Applied Science and Technology, Department of Pharmaceutical and Chemical Industries, Damascus, 31983, Syria
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
4
|
Li S, Chang R, Zhao L, Xing R, van Hest JCM, Yan X. Two-photon nanoprobes based on bioorganic nanoarchitectonics with a photo-oxidation enhanced emission mechanism. Nat Commun 2023; 14:5227. [PMID: 37633974 PMCID: PMC10460436 DOI: 10.1038/s41467-023-40897-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
Two-photon absorption (TPA) fluorescence imaging holds great promise in diagnostics and biomedicine owing to its unparalleled spatiotemporal resolution. However, the adaptability and applicability of currently available TPA probes, which act as a critical element for determining the imaging contrast effect, is severely challenged by limited photo-luminescence in vivo. This is particularly a result of uncontrollable aggregation that causes fluorescence quenching, and inevitable photo-oxidation in harsh physiological milieu, which normally leads to bleaching of the dye. Herein, we describe the remarkably enhanced TPA fluorescence imaging capacity of self-assembling near-infrared (NIR) cyanine dye-based nanoprobes (NPs), which can be explained by a photo-oxidation enhanced emission mechanism. Singlet oxygen generated during photo-oxidation enables chromophore dimerization to form TPA intermediates responsible for enhanced TPA fluorescence emission. The resulting NPs possess uniform size distribution, excellent stability, more favorable TPA cross-section and anti-bleaching ability than a popular TPA probe rhodamine B (RhB). These properties of cyanine dye-based TPA NPs promote their applications in visualizing blood circulation and tumoral accumulation in real-time, even to cellular imaging in vivo. The photo-oxidation enhanced emission mechanism observed in these near-infrared cyanine dye-based nanoaggregates opens an avenue for design and development of more advanced TPA fluorescence probes.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
6
|
Perfilov MM, Zaitseva ER, Baleeva NS, Kublitski VS, Smirnov AY, Bogdanova YA, Krasnova SA, Myasnyanko IN, Mishin AS, Baranov MS. Meta-CF 3-Substituted Analogues of the GFP Chromophore with Remarkable Solvatochromism. Int J Mol Sci 2023; 24:9923. [PMID: 37373071 DOI: 10.3390/ijms24129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.
Collapse
Affiliation(s)
- Maxim M Perfilov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elvira R Zaitseva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Vadim S Kublitski
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, Moscow 121205, Russia
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Svetlana A Krasnova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| |
Collapse
|
7
|
Shi C, Wang Y, Tian X, Lv X, An Y, Ning J, Xin X, Dai L, Ma X, Feng L. Endoplasmic Reticulum-Targeting Two-Photon Fluorescent Probe for CYP1A Activity and Its Imaging Application in Endoplasmic Reticulum Stress. Molecules 2023; 28:molecules28083472. [PMID: 37110706 PMCID: PMC10143423 DOI: 10.3390/molecules28083472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Cytochrome P450 1A is one of the vital subfamilies of heme-containing cytochrome P450 enzymes belonging to an important exogenous metabolizing CYP in human. The abnormal of endoplasmic reticulum (ER) may directly affect the functional activity of ER-located CYP1A and be associated with the occurrence and development of various diseases. In the present study, we constructed a selective two-photon fluorescent probe ERNM for rapid and visual detection of endogenous CYP1A that was localized in the ER. ERNM could target the ER and detect the enzymatically active CYP1A in living cells and tissues. The monitoring ability of ERNM for the fluctuations in functionality level of CYP1A was confirmed using ER stressed A549 cell. Based on the ER-targeting two-photon probe for CYP1A, the close association of ER state and the functional activity of ER-locating CYP1A was confirmed, which would promote the deep understanding of the biofunction of CYP1A in various ER-related diseases.
Collapse
Affiliation(s)
- Chao Shi
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Xia Lv
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yue An
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiulan Xin
- College of Bioengineering, Beijing Polytechnic, Beijing 100029, China
| | - Li Dai
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
8
|
Zeman CJ, Kang G, Kohlstedt KL. Controlling Aggregation-Induced Two-Photon Absorption Enhancement via Intermolecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45644-45657. [PMID: 36191092 DOI: 10.1021/acsami.2c12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Historically, two-photon absorption (2PA) cross sections reported in the literature have been derived from solution-phase measurements. However, such techniques fail to grasp the implications of how these cross sections can be impacted by varying degrees of aggregation or in the condensed phase as bulk solids or thin films. For a precise determination of how aggregation impacts 2PA at a molecular level, computational methods present themselves as ideal. Herein, a series of quadrupolar π-conjugated dyes were simulated by molecular dynamics (MD) in the gas phase and condensed phase. In the condensed phase, their intermolecular interactions and electronic coupling behavior were fully characterized, both quantitatively and qualitatively. Using quadratic-response time-dependent density functional theory, 2PA cross sections of structures derived from MD trajectories were calculated. Comparisons are made between gas-phase and condensed-phase results, and enhancement factors are defined to show how certain dyes may experience changes in their respective 2PA cross sections as a function of aggregation. It was found that these cross sections depend heavily on conformational locking in the condensed phase and relative stacking arrangements. J-aggregates were associated with enhanced 2PA and H-aggregates with quenched 2PA activity. However, in a highly disordered aggregate, the effects of these stacking arrangements are averaged out of the bulk result, and the effects of conformational locking dominate.
Collapse
Affiliation(s)
- Charles J Zeman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Gyeongwon Kang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
9
|
Meng X, Zhang D, Wang M, Zhao R, Zhang P, Zhao J, Deng K. Aggregation‐induced emission‐active poly (
β
‐lactam) prepared by Staudinger polymerization as specific probe to Fe
3+
ions and its antimicrobial properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xue Meng
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Da Zhang
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Meng Wang
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Ronghui Zhao
- College of Chemistry & Environmental Science Hebei University Baoding China
- Department of Clinical Pharmacy Affiliated Hospital of Hebei University Baoding China
| | - Pengfei Zhang
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Jingyuan Zhao
- College of Chemistry & Environmental Science Hebei University Baoding China
| | - Kuilin Deng
- College of Chemistry & Environmental Science Hebei University Baoding China
| |
Collapse
|
10
|
Sengar P, Chauhan K, Hirata GA. Progress on carbon dots and hydroxyapatite based biocompatible luminescent nanomaterials for cancer theranostics. Transl Oncol 2022; 24:101482. [PMID: 35841822 PMCID: PMC9293661 DOI: 10.1016/j.tranon.2022.101482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Biocompatible carbon dots (CDs) and nanohydroxyapatite (nHA) have attracted much attention for the development of optical imaging probes. This review discusses the development of CD and nHA based nanomaterials as multifunctional agents for cancer theranostics. The effect of synthesis strategies and doping on photoluminescent properties along with tuning of emission in biological window has been briefly reviewed. The cancer targeting strategies, biocompatibility and biodistribution of CDs and nHA based luminescent probes is discussed. A summary of current challenges and future perspectives is provided.
Despite the significant advancement in cancer diagnosis and therapy, a huge burden remains. Consequently, much research has been diverted on the development of multifunctional nanomaterials for improvement in conventional diagnosis and therapy. Luminescent nanomaterials offer a versatile platform for the development of such materials as their intrinsic photoluminescence (PL) property offers convergence of diagnosis as well as therapy at the same time. However, the clinical translation of nanomaterials faces various challenges, including biocompatibility and cost-effective scale up production. Thus, luminescent materials with facile synthesis approach along with intrinsic biocompatibility and anticancerous activity hold significant importance. As a result, carbon dots (CDs) and nanohydroxyapatite (nHA) have attracted much attention for the development of optical imaging probes. CDs are the newest members of the carbonaceous nanomaterials family that possess intrinsic luminescent and therapeutic properties, making them a promising candidate for cancer theranostic. Additionally, nHA is an excellent bioactive material due to its compositional similarity to the human bone matrix. The nHA crystal can efficiently host rare-earth elements to attain luminescent property, which can further be implemented for cancer theranostic applications. Herein, the development of CDs and nHA based nanomaterials as multifunctional agents for cancer has been briefly discussed. The emphasis has been given to different synthesis strategies leading to different morphologies and tunable PL spectra, followed by their diverse applications as biocompatible theranostic agents. Finally, the review has been summarized with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Prakhar Sengar
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México
| | - Gustavo A Hirata
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México.
| |
Collapse
|
11
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Chen XY, Liu ZQ, Zhao CH. Two-Photon Excited Fluorescent 3,3'-Diamino-5,5'-Diboryl-2,2'-Bithienyls Featuring a Quadrupolar Structure. Chemistry 2022; 28:e202104432. [PMID: 35293048 DOI: 10.1002/chem.202104432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 01/18/2023]
Abstract
The quest for fluorophores exhibiting large two-photon absorption cross sections and high fluorescence efficiency is an important topic. Two 2,2'-bithienyl derivatives are disclosed which contain two N,N-disubstituted amino and two dimesitylboryl groups at 3,3'- and 5,5'-positions, respectively. Despite the great steric effect of amino groups, the bithienyl skeleton still adopts a coplanar geometry. Herein, they are characterized by a quadrupolar structure and display good fluorescence efficiency and large two-photon absorption cross sections up to 473 GM.
Collapse
Affiliation(s)
- Xing-Yu Chen
- School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan, 250100, P. R. China
| | - Zhi-Qiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Shanda Nanlu 27, Jinan, 250100, P. R. China
| | - Cui-Hua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan, 250100, P. R. China
| |
Collapse
|
13
|
Gouthaman S, Jayaraj A, Sugunalakshmi M, Sivaraman G, P CAS. Supramolecular self-assembly mediated aggregation-induced emission of fluorene-derived cyanostilbenes: multifunctional probes for live cell-imaging. J Mater Chem B 2022; 10:2238-2250. [PMID: 35294959 DOI: 10.1039/d1tb02322e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first discovery of aggregation-induced emission (AIE), whereby luminogen aggregation plays a positive role in enhancing the light-emission efficiency, has piqued the interest of many researchers as it opens up a new avenue for the exploration of practically beneficial luminescent materials. Diverse AIE-active luminogens (or AIEgens) with tunable emission colours and very high quantum yields (up to unity) in the solid state have been extensively utilised in a broad range of fields including optoelectronics, energy and bioscience. In this article, we describe novel fluorene-based fluorogens that exhibit bright emission in the solid-state, mechanical stimuli-responsive optical properties and aggregation-induced emissive ability, and were able to modulate their donor and acceptor properties. The target compounds were synthesized by a Knoevenagel condensation followed by Suzuki cross-coupling reaction, which tends to result in good yields. The target cyanostilbenes (4a-4d) show different reversibly switched states with high contrast through morphology modulation and demonstrate solvatochromic, vapochromic, and AIE properties. These results strongly suggest that compound 4d has better properties than the other derivatives (4a-c) due to the presence of extended donor-acceptor ability. Moreover, density-functional theory (DFT) calculations strongly support the UV-Vis and fluorescence spectral studies. The formation of nano-flakes and cuboid-shaped nanocrystals was further confirmed by FE-SEM and AFM studies. The synthesized compound 4d displayed very bright emission in the solid state and in the aggregate state as compared with the other derivatives (4a-4c). These results might be due to the presence of high-color contrast, which is an advantage for elucidation and overcomes the challenges exhibited in live-cell imaging applications. Moreover, an MTT assay on live A549 cells incubated with the target compound (4d) showed very low cytotoxicity even at high concentrations.
Collapse
Affiliation(s)
- Siddan Gouthaman
- Organic Chemistry Division, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India. .,Department of Cellular Organization and Signaling, National Center for Biological Science-NCBS, Bangalore-560065, India
| | - Anjitha Jayaraj
- Main Group Organometallics Materials, Supramolecular Chemistry and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| | - Madurai Sugunalakshmi
- Organic Chemistry Division, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India.
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624032, Dindigul, Tamilnadu, India.
| | - Chinna Ayya Swamy P
- Main Group Organometallics Materials, Supramolecular Chemistry and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| |
Collapse
|
14
|
Zhang C, Sun YT, Gao LX, Feng B, Yan X, Guo XH, Ren AM, Zhou YB, Li J, Wang WL. Theoretical study and application of 2-phenyl-1,3,4-thiadiazole derivatives with optical and inhibitory activity against SHP1. Phys Chem Chem Phys 2022; 24:861-874. [PMID: 34908073 DOI: 10.1039/d1cp04268h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 1 (SHP1) is mainly restricted to hematopoietic and epithelial cells and widely accepted as a convergent node for oncogenic cell-signaling cascades. The development of efficient methods for rapidly tracing and inhibiting the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. With this aim, we designed and synthesized five 2-phenyl-1,3,4-thiadiazole derivatives (PT2, PT5, PT8, PT9 and PT10) here based on the reported SHP1 inhibitors (PT1, PT3, PT4, PT6 and PT7). The photophysical properties and inhibitory activities of these 2-phenyl-1,3,4-thiadiazole derivatives (PT1-PT10) against SHP1 were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound PT10 exhibited a larger quantum yield than the other molecules because of the smaller geometric relaxation and reorganization energy of the excited state, which was consistent with the results from the fluorescence experiments in organic solvents. In addition, PT10 showed a selective fluorescence response for SHP1 activity and low cytotoxicity in HeLa cells. Lastly, it indicated the potential application in two-photon cell fluorescence imaging in the future according to the calculated excellent two-photon absorption properties. In this contribution, firstly, we offered the fluorescent and activated molecule PT10 against SHP1, which achieved the integration of visualization and inhibitory activity of SHP1 preliminarily at the enzyme molecular level.
Collapse
Affiliation(s)
- Chun Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| | - Yi-Tao Sun
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| | - Li-Xin Gao
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China. .,National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Bo Feng
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China. .,National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xue Yan
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| | - Xue-Hui Guo
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2#, Changchun, 130061, P. R. China.
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2#, Changchun, 130061, P. R. China.
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong, 528400, P. R. China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong, 528400, P. R. China
| | - Wen-Long Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
15
|
Chen Z, Cao X, Chen S, Yu S, Lin Y, Lin S, Wang Z. Design, Synthesis and Application of Trisubstituted Olefinic Aggregation-Induced Emission Molecules. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zalmi GA, Jadhav RW, Mirgane HA, Bhosale SV. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2021; 27:150. [PMID: 35011382 PMCID: PMC8746362 DOI: 10.3390/molecules27010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights and explored recent advances that are being made in AIE active materials and their application in sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we outline their applications. Finally, we summarize our view of the construction and application of AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and develop the field of supramolecular chemistry in years to come.
Collapse
Affiliation(s)
| | | | | | - Sheshanath V. Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, India; (G.A.Z.); (R.W.J.); (H.A.M.)
| |
Collapse
|
17
|
Chatterjee A, Chatterjee J, Sappati S, Sheikh T, Umesh RM, Ambhore MD, Lahiri M, Hazra P. Emergence of Aggregation Induced Emission (AIE), Room-Temperature Phosphorescence (RTP), and Multistimuli Response from a Single Organic Luminogen by Directed Structural Modification. J Phys Chem B 2021; 125:12832-12846. [PMID: 34762798 DOI: 10.1021/acs.jpcb.1c08126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multifunctional organic luminogens exhibiting simultaneous aggregation induced emission (AIE), room-temperature phosphorescence (RTP), and mechanochromism have recently attracted considerable attention owing to their potential applications in optoelectronics and bioimaging. However, a comprehensive correlation among these three distinguished properties is yet to be unveiled, which will help to decipher defined methodologies to design future generation multifunctional organic materials. Herein, we have demonstrated a route to obtain a multifunctional organic luminogen, starting from an ACQphore (TPANDI) by simple structural engineering. We have shown that a slight reduction in length of the planar acceptor moieties can effectively inhibit the undesirable π-π stacking interaction between molecules in the condensed state and thereby cause an ACQ to AIE type transformation from TPANDI to TPANMI and TPAPMI. Both TPANMI and TPAPMI exhibit RTP properties (even in ambient condition) because of the presence of a reasonably low singlet-triplet energy gap (ΔEST). In our study, these two luminogens were found to be mechano-inactive. Interestingly, an insertion of cyano-ethylene group and benzene linker in between the triphenylamine and phthalimide moieties introduced another luminogen TPACNPMI, which can simultaneously exhibit AIE, RTP, and mechanochromic properties.
Collapse
Affiliation(s)
- Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008
| | - Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008
| | - Subrahmanyam Sappati
- Soft Condensed Matter, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bengaluru, Karnataka India 560080
| | - Tariq Sheikh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008
| | - Rintu M Umesh
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008
| | - Madan D Ambhore
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008.,Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune. Dr. Homi Bhabha Road, Pashan, Pune, India 411008
| |
Collapse
|
18
|
Zhang D, Zheng J, Zhang P, Zhao R, Chen Z, Wang M, Deng K. Polyurea Modified with 4‐Dihydropyrimidone‐2‐ketone Rings by Biginelli Reaction and its Boostered AIE Characteristic. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Da Zhang
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Jinxin Zheng
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Pengfei Zhang
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Ronghui Zhao
- Affiliated Hospital Hebei University Baoding 071002 China
| | - Zhuo Chen
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Meng Wang
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Kuilin Deng
- College of Chemistry & Environmental Science Hebei University Baoding 071002 China
| |
Collapse
|
19
|
Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal-Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. Int J Mol Sci 2021; 22:ijms22137094. [PMID: 34209461 PMCID: PMC8268053 DOI: 10.3390/ijms22137094] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin, an active component of the rhizome turmeric, has gained much attention as a plant-based compound with pleiotropic pharmacological properties. It possesses anti-inflammatory, antioxidant, hypoglycemic, antimicrobial, neuroprotective, and immunomodulatory activities. However, the health-promoting utility of curcumin is constrained due to its hydrophobic nature, water insolubility, poor bioavailability, rapid metabolism, and systemic elimination. Therefore, an innovative stride was taken, and complexes of metals with curcumin have been synthesized. Curcumin usually reacts with metals through the β-diketone moiety to generate metal–curcumin complexes. It is well established that curcumin strongly chelates several metal ions, including boron, cobalt, copper, gallium, gadolinium, gold, lanthanum, manganese, nickel, iron, palladium, platinum, ruthenium, silver, vanadium, and zinc. In this review, the pharmacological, chemopreventive, and therapeutic activities of metal–curcumin complexes are discussed. Metal–curcumin complexes increase the solubility, cellular uptake, and bioavailability and improve the antioxidant, anti-inflammatory, antimicrobial, and antiviral effects of curcumin. Metal–curcumin complexes have also demonstrated efficacy against various chronic diseases, including cancer, arthritis, osteoporosis, and neurological disorders such as Alzheimer’s disease. These biological activities of metal–curcumin complexes were associated with the modulation of inflammatory mediators, transcription factors, protein kinases, antiapoptotic proteins, lipid peroxidation, and antioxidant enzymes. In addition, metal–curcumin complexes have shown usefulness in biological imaging and radioimaging. The future use of metal–curcumin complexes may represent a new approach in the prevention and treatment of chronic diseases.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Research and Development Laboratory, Noble Pharma LLC, Menomonie, WI 54751, USA
- Correspondence: or ; Tel.: +1-715-231-1234
| | - Dan DuBourdieu
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| | - Ajay Srivastava
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| | - Prafulla Kumar
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| | - Rajiv Lall
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| |
Collapse
|
20
|
Chen L, Chen M, Zhou Y, Ye C, Liu R. NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Front Chem 2021; 9:629062. [PMID: 33708758 PMCID: PMC7940671 DOI: 10.3389/fchem.2021.629062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
Preparation of near-infrared (NIR) emissive fluorophore for imaging-guided PDT (photodynamic therapy) has attracted enormous attention. Hence, NIR photosensitizers of two-photon (TP) fluorescent imaging and photodynamic therapy are highly desirable. In this contribution, a novel D-π-A structured NIR photosensitizer (TTRE) is synthesized. TTRE demonstrates near-infrared (NIR) emission, good biocompatibility, and superior photostability, which can act as TP fluorescent agent for clear visualization of cells and vascular in tissue with deep-tissue penetration. The PDT efficacy of TTRE as photosensitizer is exploited in vitro and in vivo. All these results confirm that TTRE would serve as potential platform for TP fluorescence imaging and imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Lujia Chen
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meijuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Changsheng Ye
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Li Y, Zhou Y, Yao Y, Gao T, Yan P, Li H. White-light emission from the quadruple-stranded dinuclear Eu( iii) helicate decorated with pendent tetraphenylethylene (TPE). NEW J CHEM 2021. [DOI: 10.1039/d1nj00700a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hybrid film doped with a quadruple-stranded Eu3+ helicate displayed tuneable emission and white light.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yuan Yao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| |
Collapse
|