1
|
Karan A, Sharma NS, Darder M, Su Y, Andrabi SM, Shahriar SMS, John JV, Luo Z, DeCoster MA, Zhang YS, Xie J. Copper-Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS OMEGA 2024; 9:9765-9781. [PMID: 38434900 PMCID: PMC10905775 DOI: 10.1021/acsomega.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Copper-cystine-based high aspect ratio structures (CuHARS) possess exceptional physical and chemical properties and exhibit remarkable biodegradability in human physiological conditions. Extensive testing has confirmed the biocompatibility and biodegradability of CuHARS under diverse biological conditions, making them a viable source of essential Cu2+. These ions are vital for catalyzing the production of nitric oxide (NO) from the decomposition of S-nitrosothiols (RSNOs) found in human blood. The ability of CuHARS to act as a Cu2+ donor under specific concentrations has been demonstrated in this study, resulting in the generation of elevated levels of NO. Consequently, this dual function makes CuHARS effective as both a bactericidal agent and a promoter of angiogenesis. In vitro experiments have shown that CuHARS actively promotes the migration and formation of complete lumens by redirecting microvascular endothelial cells. To maximize the benefits of CuHARS, they have been incorporated into biomimetic electrospun poly(ε-caprolactone)/gelatin nanofiber aerogels. Through the regulated release of Cu2+ and NO production, these channeled aerogels not only provide antibacterial support but also promote angiogenesis. Taken together, the inclusion of CuHARS in biomimetic scaffolds could hold great promise in revolutionizing tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Anik Karan
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Navatha Shree Sharma
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Margarita Darder
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
| | - Yajuan Su
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Syed Muntazir Andrabi
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - S M Shatil Shahriar
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V. John
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Zeyu Luo
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mark A. DeCoster
- Biomedical
Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
- Institute
for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jingwei Xie
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
2
|
Cazzoli R, Zamborlin A, Ermini ML, Salerno A, Curcio M, Nicoletta FP, Iemma F, Vittorio O, Voliani V, Cirillo G. Evolving approaches in glioma treatment: harnessing the potential of copper metabolism modulation. RSC Adv 2023; 13:34045-34056. [PMID: 38020008 PMCID: PMC10661684 DOI: 10.1039/d3ra06434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Antonietta Salerno
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
- School of Biomedical Sciences, University of New South Wales Sydney NSW Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| |
Collapse
|
3
|
Yao K, Zhang R, Li L, Liu M, Feng S, Yan H, Zhang Z, Xie D. The signature of cuproptosis-related immune genes predicts the tumor microenvironment and prognosis of prostate adenocarcinoma. Front Immunol 2023; 14:1181370. [PMID: 37600770 PMCID: PMC10433769 DOI: 10.3389/fimmu.2023.1181370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Cuproptosis plays a crucial role in cancer, and different subtypes of cuproptosis have different immune profiles in prostate adenocarcinoma (PRAD). This study aimed to investigate immune genes associated with cuproptosis and develop a risk model to predict prognostic characteristics and chemotherapy/immunotherapy responses of patients with PRAD. Methods The CIBERSORT algorithm was used to evaluate the immune and stromal scores of patients with PRAD in The Cancer Genome Atlas (TCGA) cohort. Validation of differentially expressed genes DLAT and DLD in benign and malignant tissues by immunohistochemistry, and the immune-related genes of DLAT and DLD were further screened. Univariable Cox regression were performed to select key genes. Least absolute shrinkage and selection operator (LASSO)-Cox regression analyse was used to develop a risk model based on the selected genes. The model was validated in the TCGA, Memorial Sloan-Kettering Cancer Center (MSKCC) and Gene Expression Omnibus (GEO) datasets, as well as in this study unit cohort. The genes were examined via functional enrichment analysis, and the tumor immune features, tumor mutation features and copy number variations (CNVs) of patients with different risk scores were analysed. The response of patients to multiple chemotherapeutic/targeted drugs was assessed using the pRRophetic algorithm, and immunotherapy was inferred by the Tumor Immune Dysfunction and Exclusion (TIDE) and immunophenoscore (IPS). Results Cuproptosis-related immune risk scores (CRIRSs) were developed based on PRLR, DES and LECT2. High CRIRSs indicated poor overall survival (OS), disease-free survival (DFS) in the TCGA-PRAD, MSKCC and GEO datasets and higher T stage and Gleason scores in TCGA-PRAD. Similarly, in the sample collected by the study unit, patients with high CRIRS had higher T-stage and Gleason scores. Additionally, higher CRIRSs were negatively correlated with the abundance of activated B cells, activated CD8+ T cells and other stromal or immune cells. The expression of some immune checkpoints was negatively correlated with CRIRSs. Tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH) and copy number variation (CNV) scores were all higher in the high-CRIRS group. Multiple chemotherapeutic/targeted drugs and immunotherapy had better responsiveness in the low-CRIRS group. Conclusion Overall, lower CRIRS indicated better response to treatment strategies and better prognostic outcomes.
Collapse
Affiliation(s)
- Kai Yao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Liang Li
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingdong Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shiyao Feng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haixin Yan
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihui Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongdong Xie
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Urology, Affiliated Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| |
Collapse
|
4
|
Salvatori L, Malatesta S, Illi B, Somma MP, Fionda C, Stabile H, Fontanella RA, Gaetano C. Nitric Oxide Prevents Glioblastoma Stem Cells' Expansion and Induces Temozolomide Sensitization. Int J Mol Sci 2023; 24:11286. [PMID: 37511047 PMCID: PMC10379318 DOI: 10.3390/ijms241411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Malatesta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rosaria Anna Fontanella
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
5
|
Shen N, Chen S, Liu D, Min X, Tan Q. Cuproptosis-related classification and personalized treatment in lower-grade gliomas to prompt precise oncology. J Gene Med 2023; 25:e3486. [PMID: 36814111 DOI: 10.1002/jgm.3486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Cuproptosis is implicated in regulating tricarboxylic acid cycle and associated with tumor therapeutic sensitivity, patient outcomes and tumorigenesis. However, the classification and prognostic effect of cuproptosis-associated genes (CAGs), the relationship between cuproptosis and tumor microenvironment (TME) and the treatment of lower-grade glioma (LrGG) remain enigmatic. METHODS The genetic and transcriptional alterations, prognostic value and classification related to cuproptosis were systematically analyzed. Subtypes of cuproptosis and cuproptosis score (Cuscore) were constructed and further confirmed by two external cohorts. The relationships between cuproptosis and TME, prognosis, and treatment response were also evaluated. RESULTS Four clusters were identified based on cuproptosis-associated genes. The associations between cuproptosis-associated clusters and clinical features, prognosis, immune cell infiltration, and chemotherapy sensitivity were observed. The Cuscore is an independent prognostic indicator in LrGG patients. The nomogram is constructed according to Cuscore and clinical characteristics, and has good predictive ability and calibration. Patients with high Cuscore had a worse prognosis and advanced performance. A higher Cuscore also indicated a higher stromal score, abundant immune infiltration, and increased tumor mutation burden. A high Cuscore was remarkably related to immune checkpoint inhibitors, immunotherapy response and immune phenotype. CONCLUSIONS This study demonstrates the clinical effect of CAGs, and suggests that cuproptosis could be a potential therapeutic target in LrGG.
Collapse
Affiliation(s)
- Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Chen
- United Imaging Intelligence, Shanghai, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghai Tan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Existing and Novel Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 24:ijms24010529. [PMID: 36613972 PMCID: PMC9820083 DOI: 10.3390/ijms24010529] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The treatment of bone defects remains one of the major challenges in modern clinical practice. Nowadays, with the increased incidence of bone disease in an aging population, the demand for materials to repair bone defects continues to grow. Recent advances in the development of biomaterials offer new possibilities for exploring modern bone tissue engineering strategies. Both natural and synthetic biomaterials have been used for tissue repair. A variety of porous structures that promote cell adhesion, differentiation, and proliferation enable better implant integration with increasingly better physical properties. The selection of a suitable biomaterial on which the patient's new tissue will grow is one of the key issues when designing a modern tissue scaffold and planning the entire treatment process. The purpose of this article is to present a comprehensive literature review of existing and novel biomaterials used in the surgical treatment of bone tissue defects. The materials described are divided into three groups-organic, inorganic, and synthetic polymers-taking into account current trends. This review highlights different types of existing and novel natural and synthetic materials used in bone tissue engineering and their advantages and disadvantages for bone defects regeneration.
Collapse
|
7
|
Ni Z, Wan M, Tang G, Sun L. Synthesis of CuO and PAA-Regulated Silver-Carried CuO Nanosheet Composites and Their Antibacterial Properties. Polymers (Basel) 2022; 14:polym14245422. [PMID: 36559789 PMCID: PMC9787518 DOI: 10.3390/polym14245422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
With the aid of a facile and green aqueous solution approach, a variety of copper oxide (CuO) with different shapes and polyacrylic-acid (PAA)-regulated silver-carried CuO (CuO@Ag) nanosheet composites have been successfully produced. The point of this article was to propose a common synergy using Ag-carried CuO nanosheet composites for their potential antibacterial efficiency against three types of bacteria such as E. coli, P. aeruginosa, and S. aureus. By using various technical means such as XRD, SEM, and TEM, the morphology and composition of CuO and CuO@Ag were characterized. It was shown that both CuO and CuO@Ag have a laminar structure and exhibit good crystallization, and that the copper source and reaction duration have a sizable impact on the morphology and size distribution of the product. In the process of synthesizing CuO@Ag, the appropriate amount of polyacrylic acid (PAA) can inhibit the agglomeration of Ag NPs and regulate the size of Ag at about ten nanometers. In addition, broth dilution, optical density (OD 600), and electron microscopy analysis were used to assess the antimicrobial activity of CuO@Ag against the above three types of bacteria. CuO@Ag exhibits excellent synergistic and antibacterial action, particularly against S. aureus. The antimicrobial mechanism of the CuO@Ag nanosheet composites can be attributed to the destruction of the bacterial cell membrane and the consequent leakage of the cytoplasm by the release of Ag+ and Cu2+. The breakdown of the bacterial cell membrane and subsequent leakage of cytoplasm caused by Ag+ and Cu2+ released from antimicrobial agents may be the cause of the CuO@Ag nanosheet composites' antibacterial action. This study shows that CuO@Ag nanosheet composites have good antibacterial properties, which also provides the basis and ideas for the application research of other silver nanocomposites.
Collapse
Affiliation(s)
- Zhihui Ni
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
- Correspondence: (Z.N.); (L.S.)
| | - Menghui Wan
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Gongming Tang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
- Correspondence: (Z.N.); (L.S.)
| |
Collapse
|
8
|
Wu Q, Tian R, Tan H, Liu J, Ou C, Li Y, Fu X. A comprehensive analysis focusing on cuproptosis to investigate its clinical and biological relevance in uterine corpus endometrial carcinoma and its potential in indicating prognosis. Front Mol Biosci 2022; 9:1048356. [PMID: 36567939 PMCID: PMC9767979 DOI: 10.3389/fmolb.2022.1048356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cuproptosis, a novel copper-dependent cell death involving mitochondrial respiration, is distinct from other known death mechanisms, which inspires us to study further in uterine corpus endometrial carcinoma (UCEC). Herein, leveraging comprehensive data from TCGA-UCEC, we conducted transcriptional and genetic analyses of 13 recently identified cuproptosis genes. We discovered severe genetic instability of cuproptosis genes, extensive positive correlations among those genes with each other at the mRNA level, and their involvement in oncogenic pathways in UCEC samples. Next, WGCNA was performed to identify a potential module regulating cuproptosis, in which the hub genes, in addition to 13 cuproptosis genes, were drawn to construct a scoring system termed Cu. Score. Furthermore, its clinical and biological relevance and tumor immune landscape, genetic alterations, as well as predicted sensitivity of chemotherapy drugs in different Cu. Score subgroups had been discussed extensively and in detail. Additionally, univariate Cox and LASSO regression were performed to identify 13 cuproptosis-related prognostic genes to establish a prognostic signature, the Risk. Score. Integrating the Risk. Score and clinical parameters, we established a nomogram with excellent performance to predict the 1-/3-/5-year survival probabilities of UCEC patients. To conclude, we conducted a comprehensive analysis encompassing cuproptosis and developed a cuproptosis scoring system and a prognostic prediction model for UCEC, which may offer help with individualized assessment and treatment for UCEC patients from the perspective of a novel death mechanism.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Tan
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Chunlin Ou, ; Yimin Li, ; Xiaodan Fu,
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Chunlin Ou, ; Yimin Li, ; Xiaodan Fu,
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Chunlin Ou, ; Yimin Li, ; Xiaodan Fu,
| |
Collapse
|
9
|
Song Q, Zhou R, Shu F, Fu W. Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer. Front Immunol 2022; 13:958368. [PMID: 35990642 PMCID: PMC9386055 DOI: 10.3389/fimmu.2022.958368] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 12/20/2022] Open
Abstract
Cuproptosis is a novel copper ion-dependent cell death type being regulated in cells, and this is quite different from the common cell death patterns such as apoptosis, pyroptosis, necroptosis, and ferroptosis. Interestingly, like with death patterns, cuproptosis-related genes have recently been reported to regulate the occurrence and progression of various tumors. However, in bladder cancer, the link between cuproptosis and clinical outcome, tumor microenvironment (TME) modification, and immunotherapy is unknown. To determine the role of cuprotosis in the tumor microenvironment, we systematically examined the characteristic patterns of 10 cuproptosis-related genes in bladder cancer (BLCA). By analyzing principal component data, we established a cuproptosis score to determine the degree of cuproptosis among patients. Finally, we evaluated the potential of these values in predicting BLCA prognosis and treatment responses. A comprehensive study of the mutations of cuproptosis-related genes in BLCA specimens was conducted at the genetic level, and their expression and survival patterns were evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Two cuproptosis patterns were constructed based on the transcription level of 10 cuproptosis-related genes, featuring differences in the prognosis and the infiltrating landscape of immune cells (especially T and dendritic cells) with interactions between cuproptosis and the TME. Our study further demonstrated that cuproptosis score may predict prognosis, immunophenotype sensitivity to chemotherapy, and immunotherapy response among bladder cancer patients. The development and progression of bladder cancer are likely to be influenced by cuproptosis, which may involve a diverse and complex TME. The cuproptosis pattern evaluated in our study may enhance understanding of immune infiltrations and guide more potent immunotherapy interventions.
Collapse
Affiliation(s)
- Qiang Song
- Department of Urology, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, China,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Zhou
- Department of Urology, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, China
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, China,*Correspondence: Wen Fu, ; Fangpeng Shu,
| | - Wen Fu
- Department of Urology, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, China,*Correspondence: Wen Fu, ; Fangpeng Shu,
| |
Collapse
|
10
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
11
|
Shen Q, Qi Y, Kong Y, Bao H, Wang Y, Dong A, Wu H, Xu Y. Advances in Copper-Based Biomaterials With Antibacterial and Osteogenic Properties for Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 9:795425. [PMID: 35127670 PMCID: PMC8811349 DOI: 10.3389/fbioe.2021.795425] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Treating bone defects coupled with pathogen infections poses a formidable challenge to clinical medicine. Thus, there is an urgent need to develop orthopedic implants that provide excellent antibacterial and osteogenic properties. Of the various types, copper-based biomaterials capable of both regenerating bone and fighting infections are an effective therapeutic strategy for bone tissue engineering and therefore have attracted significant research interest. This review examines the advantages of copper-based biomaterials for biological functions and introduces these materials’ antibacterial mechanisms. We summarize current knowledge about the application of copper-based biomaterials with antimicrobial and osteogenic properties in the prevention and treatment of bone infection and discuss their potential uses in the field of orthopedics. By examining both broad and in-depth research, this review functions as a practical guide to developing copper-based biomaterials and offers directions for possible future work.
Collapse
Affiliation(s)
- Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Yansong Qi
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Huricha Bao
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yifan Wang
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| | - Yongsheng Xu
- Department of Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
- *Correspondence: Alideertu Dong, ; Haixia Wu, ; Yongsheng Xu,
| |
Collapse
|