1
|
Vittorio S, Lunghini F, Morerio P, Gadioli D, Orlandini S, Silva P, Jan Martinovic, Pedretti A, Bonanni D, Del Bue A, Palermo G, Vistoli G, Beccari AR. Addressing docking pose selection with structure-based deep learning: Recent advances, challenges and opportunities. Comput Struct Biotechnol J 2024; 23:2141-2151. [PMID: 38827235 PMCID: PMC11141151 DOI: 10.1016/j.csbj.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Molecular docking is a widely used technique in drug discovery to predict the binding mode of a given ligand to its target. However, the identification of the near-native binding pose in docking experiments still represents a challenging task as the scoring functions currently employed by docking programs are parametrized to predict the binding affinity, and, therefore, they often fail to correctly identify the ligand native binding conformation. Selecting the correct binding mode is crucial to obtaining meaningful results and to conveniently optimizing new hit compounds. Deep learning (DL) algorithms have been an area of a growing interest in this sense for their capability to extract the relevant information directly from the protein-ligand structure. Our review aims to present the recent advances regarding the development of DL-based pose selection approaches, discussing limitations and possible future directions. Moreover, a comparison between the performances of some classical scoring functions and DL-based methods concerning their ability to select the correct binding mode is reported. In this regard, two novel DL-based pose selectors developed by us are presented.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Filippo Lunghini
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123 Naples, Italy
| | - Pietro Morerio
- Pattern Analysis and Computer Vision, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Davide Gadioli
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, I-20133 Milano, Italy
| | - Sergio Orlandini
- SCAI, SuperComputing Applications and Innovation Department, CINECA, Via dei Tizii 6, Rome 00185, Italy
| | - Paulo Silva
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Jan Martinovic
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Domenico Bonanni
- Department of Physical and Chemical Sciences, University of L′Aquila, via Vetoio, L′Aquila 67010, Italy
| | - Alessio Del Bue
- Pattern Analysis and Computer Vision, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
| | - Gianluca Palermo
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, I-20133 Milano, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, I-20133 Milano, Italy
| | - Andrea R. Beccari
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123 Naples, Italy
| |
Collapse
|
2
|
Wang K, Huang Y, Wang Y, You Q, Wang L. Recent advances from computer-aided drug design to artificial intelligence drug design. RSC Med Chem 2024:d4md00522h. [PMID: 39493228 PMCID: PMC11523840 DOI: 10.1039/d4md00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Computer-aided drug design (CADD), a cornerstone of modern drug discovery, can predict how a molecular structure relates to its activity and interacts with its target using structure-based and ligand-based methods. Fueled by ever-increasing data availability and continuous model optimization, artificial intelligence drug design (AIDD), as an enhanced iteration of CADD, has thrived in the past decade. AIDD demonstrates unprecedented opportunities in protein folding, property prediction, and molecular generation. It can also facilitate target identification, high-throughput screening (HTS), and synthetic route prediction. With AIDD involved, the process of drug discovery is greatly accelerated. Notably, AIDD offers the potential to explore uncharted territories of chemical space beyond current knowledge. In this perspective, we began by briefly outlining the main workflows and components of CADD. Then through showcasing exemplary cases driven by AIDD in recent years, we describe the evolving role of artificial intelligence (AI) in drug discovery from three distinct stages, that is, chemical library screening, linker generation, and de novo molecular generation. In this process, we attempted to draw comparisons between the features of CADD and AIDD.
Collapse
Affiliation(s)
- Keran Wang
- State Key Laboratory of Natural Medicines and, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China +86 025 83271351 +86 15261483858
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Yanwen Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Yan Wang
- Department of Urology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai 201203 China +86 13122152007
| | - Qidong You
- State Key Laboratory of Natural Medicines and, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China +86 025 83271351 +86 15261483858
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China +86 025 83271351 +86 15261483858
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
3
|
Gomatam A, Hirlekar BU, Singh KD, Murty US, Dixit VA. Improved QSAR models for PARP-1 inhibition using data balancing, interpretable machine learning, and matched molecular pair analysis. Mol Divers 2024; 28:2135-2152. [PMID: 38374474 DOI: 10.1007/s11030-024-10809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024]
Abstract
The poly (ADP-ribose) polymerase-1 (PARP-1) enzyme is an important target in the treatment of breast cancer. Currently, treatment options include the drugs Olaparib, Niraparib, Rucaparib, and Talazoparib; however, these drugs can cause severe side effects including hematological toxicity and cardiotoxicity. Although in silico models for the prediction of PARP-1 activity have been developed, the drawbacks of these models include low specificity, a narrow applicability domain, and a lack of interpretability. To address these issues, a comprehensive machine learning (ML)-based quantitative structure-activity relationship (QSAR) approach for the informed prediction of PARP-1 activity is presented. Classification models built using the Synthetic Minority Oversampling Technique (SMOTE) for data balancing gave robust and predictive models based on the K-nearest neighbor algorithm (accuracy 0.86, sensitivity 0.88, specificity 0.80). Regression models were built on structurally congeneric datasets, with the models for the phthalazinone class and fused cyclic compounds giving the best performance. In accordance with the Organization for Economic Cooperation and Development (OECD) guidelines, a mechanistic interpretation is proposed using the Shapley Additive Explanations (SHAP) to identify the important topological features to differentiate between PARP-1 actives and inactives. Moreover, an analysis of the PARP-1 dataset revealed the prevalence of activity cliffs, which possibly negatively impacts the model's predictive performance. Finally, a set of chemical transformation rules were extracted using the matched molecular pair analysis (MMPA) which provided mechanistic insights and can guide medicinal chemists in the design of novel PARP-1 inhibitors.
Collapse
Affiliation(s)
- Anish Gomatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Bhakti Umesh Hirlekar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Krishan Dev Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Upadhyayula Suryanarayana Murty
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Vaibhav A Dixit
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India.
| |
Collapse
|
4
|
Saifi I, Bhat BA, Hamdani SS, Bhat UY, Lobato-Tapia CA, Mir MA, Dar TUH, Ganie SA. Artificial intelligence and cheminformatics tools: a contribution to the drug development and chemical science. J Biomol Struct Dyn 2024; 42:6523-6541. [PMID: 37434311 DOI: 10.1080/07391102.2023.2234039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
In the ever-evolving field of drug discovery, the integration of Artificial Intelligence (AI) and Machine Learning (ML) with cheminformatics has proven to be a powerful combination. Cheminformatics, which combines the principles of computer science and chemistry, is used to extract chemical information and search compound databases, while the application of AI and ML allows for the identification of potential hit compounds, optimization of synthesis routes, and prediction of drug efficacy and toxicity. This collaborative approach has led to the discovery, preclinical evaluations and approval of over 70 drugs in recent years. To aid researchers in the pursuit of new drugs, this article presents a comprehensive list of databases, datasets, predictive and generative models, scoring functions and web platforms that have been launched between 2021 and 2022. These resources provide a wealth of information and tools for computer-assisted drug development, and are a valuable asset for those working in the field of cheminformatics. Overall, the integration of AI, ML and cheminformatics has greatly advanced the drug discovery process and continues to hold great potential for the future. As new resources and technologies become available, we can expect to see even more groundbreaking discoveries and advancements in these fields.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ifra Saifi
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Syed Suhail Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Umar Yousuf Bhat
- Department of Zoology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | | | - Mushtaq Ahmad Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, KSA, Saudi Arabia
| | - Tanvir Ul Hasan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| |
Collapse
|
5
|
Liu N, Tu J, Huang Y, Yang W, Wang Q, Li Z, Sheng C. Target- and prodrug-based design for fungal diseases and cancer-associated fungal infections. Adv Drug Deliv Rev 2023; 197:114819. [PMID: 37024014 DOI: 10.1016/j.addr.2023.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Invasive fungal infections (IFIs) are emerging as a serious threat to public health and are associated with high incidence and mortality. IFIs also represent a frequent complication in patients with cancer who are undergoing chemotherapy. However, effective and safe antifungal agents remain limited, and the development of severe drug resistance further undermines the efficacy of antifungal therapy. Therefore, there is an urgent need for novel antifungal agents to treat life-threatening fungal diseases, especially those with new mode of action, favorable pharmacokinetic profiles, and anti-resistance activity. In this review, we summarize new antifungal targets and target-based inhibitor design, with a focus on their antifungal activity, selectivity, and mechanism. We also illustrate the prodrug design strategy used to improve the physicochemical and pharmacokinetic profiles of antifungal agents. Dual-targeting antifungal agents offer a new strategy for the treatment of resistant infections and cancer-associated fungal infections.
Collapse
|
6
|
Gajewicz-Skretna A, Wyrzykowska E, Gromelski M. Quantitative multi-species toxicity modeling: Does a multi-species, machine learning model provide better performance than a single-species model for the evaluation of acute aquatic toxicity by organic pollutants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160590. [PMID: 36473653 DOI: 10.1016/j.scitotenv.2022.160590] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The toxicological profile of any chemical is defined by multiple endpoints and testing procedures, including representative test species from different trophic levels. While computer-aided methods play an increasingly important role in supporting ecotoxicology research and chemical hazard assessment, most of the recently developed machine learning models are directed towards a single, specific endpoint. To overcome this limitation and accelerate the process of identifying potentially hazardous environmental pollutants, we are introducing an effective approach for quantitative, multi-species modeling. The proposed approach is based on canonical correlation analysis that finds a pair(s) of uncorrelated, linear combinations of the original variables that best defines the overall variability within and between multiple biological responses and predictor variables. Its effectiveness was confirmed by the machine learning model for estimating acute toxicity of diverse organic pollutants in aquatic species from three trophic levels: algae (Pseudokirchneriella subcapitata), daphnia (Daphnia magna), and fish (Oryzias latipes). The multi-species model achieved a favorable predictive performance that were in line with predictive models derived for the aquatic organisms individually. The chemical bioavailability and reactivity parameters (n-octanol/water partition coefficient, chemical potential, and molecular size and volume) were important to accurately predict acute ecotoxicity to the three aquatic organisms. To facilitate the use of this approach, an open-source, Python-based script, named qMTM (quantitative Multi-species Toxicity Modeling) has been provided.
Collapse
Affiliation(s)
- Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Ewelina Wyrzykowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maciej Gromelski
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Speck-Planche A, Kleandrova VV. Multi-Condition QSAR Model for the Virtual Design of Chemicals with Dual Pan-Antiviral and Anti-Cytokine Storm Profiles. ACS OMEGA 2022; 7:32119-32130. [PMID: 36120024 PMCID: PMC9476185 DOI: 10.1021/acsomega.2c03363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are infectious agents, which can cause pandemics. Although nowadays the danger associated with respiratory viruses continues to be evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the virus responsible for the current COVID-19 pandemic, other viruses such as SARS-CoV-1, the influenza A and B viruses (IAV and IBV, respectively), and the respiratory syncytial virus (RSV) can lead to globally spread viral diseases. Also, from a biological point of view, most of these viruses can cause an organ-damaging hyperinflammatory response known as the cytokine storm (CS). Computational approaches constitute an essential component of modern drug development campaigns, and therefore, they have the potential to accelerate the discovery of chemicals able to simultaneously inhibit multiple molecular and nonmolecular targets. We report here the first multicondition model based on quantitative structure-activity relationships and an artificial neural network (mtc-QSAR-ANN) for the virtual design and prediction of molecules with dual pan-antiviral and anti-CS profiles. Our mtc-QSAR-ANN model exhibited an accuracy higher than 80%. By interpreting the different descriptors present in the mtc-QSAR-ANN model, we could retrieve several molecular fragments whose assembly led to new molecules with drug-like properties and predicted pan-antiviral and anti-CS activities.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Grupo
de Química Computacional y Teórica (QCT-USFQ), Departamento
de Ingeniería Química, Universidad
San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - Valeria V. Kleandrova
- Laboratory
of Fundamental and Applied Research of Quality and Technology of Food
Production, Moscow State University of Food
Production, Volokolamskoe
shosse 11, 125080, Moscow, Russian Federation
| |
Collapse
|
8
|
Xiao Y, Su D, Hu X, Yang G, Shan Y. Neohesperidin Dihydrochalcone Ameliorates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9421-9431. [PMID: 35862634 DOI: 10.1021/acs.jafc.2c03574] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-fat diet (HFD) is closely related to the formation of metabolic diseases. Studies have confirmed that neohesperidin dihydrochalcone (NHDC) possesses the biological activity of preventing glycolipid metabolism disorder. To explore the mechanism of its preventive activity against glucolipid metabolism disorder, HFD-treated rats were orally administered with NHDC for 12 weeks continuously. The results showed that, compared with the HFD group, the intervention of 40-80 mg/kg body weight of NHDC effectively downregulated the level of fasting blood glucose. Western blot analysis revealed that the treatment of NHDC alleviated the inhibitory effect of HFD on the expression of hepatic GLUT-4 and IRS-1. Further studies confirmed that NHDC reduced the degree of HFD-stimulated inflammation of ileum through the TLR4/MyD88/NF-κB signaling pathway. Moreover, ileum intestinal flora analysis showed that intragastric administration of NHDC reversed the change of Proteobacteria abundance and the Firmicutes/Bacteroidetes (F/B) ratio caused by HFD. At the generic level, NHDC promoted the relative abundance of Coprococcus, Bifidobacterium, Clostridium, Oscillospira, and [Eubacterium], while reducing the relative abundance of Defluviitalea and Prevotella. Taken together, these findings suggest that NHDC possesses the biological activity of improving HFD-induced glycolipid metabolism disorder.
Collapse
Affiliation(s)
- Yecheng Xiao
- Longping Branch Graduate School, Hunan University, Changsha, Hunan 410125, China
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Donglin Su
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Xing Hu
- Lianyuan Kanglu Biotech Co., Ltd., Lianyuan, Hunan 417100, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-Products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yang Shan
- Longping Branch Graduate School, Hunan University, Changsha, Hunan 410125, China
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
9
|
ZHANG BY, ZHENG YF, ZHAO J, KANG D, WANG Z, XU LJ, LIU AL, DU GH. Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation. Chin J Nat Med 2022; 20:332-351. [DOI: 10.1016/s1875-5364(22)60180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/03/2022]
|
10
|
Halder AK, Moura AS, Cordeiro MNDS. Moving Average-Based Multitasking In Silico Classification Modeling: Where Do We Stand and What Is Next? Int J Mol Sci 2022; 23:ijms23094937. [PMID: 35563327 PMCID: PMC9099502 DOI: 10.3390/ijms23094937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Conventional in silico modeling is often viewed as 'one-target' or 'single-task' computer-aided modeling since it mainly relies on forecasting an endpoint of interest from similar input data. Multitasking or multitarget in silico modeling, in contrast, embraces a set of computational techniques that efficiently integrate multiple types of input data for setting up unique in silico models able to predict the outcome(s) relating to various experimental and/or theoretical conditions. The latter, specifically, based upon the Box-Jenkins moving average approach, has been applied in the last decade to several research fields including drug and materials design, environmental sciences, and nanotechnology. The present review discusses the current status of multitasking computer-aided modeling efforts, meanwhile describing both the existing challenges and future opportunities of its underlying techniques. Some important applications are also discussed to exemplify the ability of multitasking modeling in deriving holistic and reliable in silico classification-based models as well as in designing new chemical entities, either through fragment-based design or virtual screening. Focus will also be given to some software recently developed to automate and accelerate such types of modeling. Overall, this review may serve as a guideline for researchers to grasp the scope of multitasking computer-aided modeling as a promising in silico tool.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.K.H.); (A.S.M.)
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ana S. Moura
- LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.K.H.); (A.S.M.)
| | - Maria Natália D. S. Cordeiro
- LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.K.H.); (A.S.M.)
- Correspondence: ; Tel.: +35-12-2040-2502
| |
Collapse
|
11
|
PTML Modeling for Pancreatic Cancer Research: In Silico Design of Simultaneous Multi-Protein and Multi-Cell Inhibitors. Biomedicines 2022; 10:biomedicines10020491. [PMID: 35203699 PMCID: PMC8962338 DOI: 10.3390/biomedicines10020491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PANC) is a dangerous type of cancer that is a major cause of mortality worldwide and exhibits a remarkably poor prognosis. To date, discovering anti-PANC agents remains a very complex and expensive process. Computational approaches can accelerate the search for anti-PANC agents. We report for the first time two models that combined perturbation theory with machine learning via a multilayer perceptron network (PTML-MLP) to perform the virtual design and prediction of molecules that can simultaneously inhibit multiple PANC cell lines and PANC-related proteins, such as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and the insulin-like growth factor 1 receptor (IGF1R). Both PTML-MLP models exhibited accuracies higher than 78%. Using the interpretation from one of the PTML-MLP models as a guideline, we extracted different molecular fragments desirable for the inhibition of the PANC cell lines and the aforementioned PANC-related proteins and then assembled some of those fragments to form three new molecules. The two PTML-MLP models predicted the designed molecules as potentially versatile anti-PANC agents through inhibition of the three PANC-related proteins and multiple PANC cell lines. Conclusions: This work opens new horizons for the application of the PTML modeling methodology to anticancer research.
Collapse
|
12
|
Speck-Planche A, Kleandrova VV, Scotti MT. In Silico Drug Repurposing for Anti-Inflammatory Therapy: Virtual Search for Dual Inhibitors of Caspase-1 and TNF-Alpha. Biomolecules 2021; 11:biom11121832. [PMID: 34944476 PMCID: PMC8699067 DOI: 10.3390/biom11121832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation involves a complex biological response of the body tissues to damaging stimuli. When dysregulated, inflammation led by biomolecular mediators such as caspase-1 and tumor necrosis factor-alpha (TNF-alpha) can play a detrimental role in the progression of different medical conditions such as cancer, neurological disorders, autoimmune diseases, and cytokine storms caused by viral infections such as COVID-19. Computational approaches can accelerate the search for dual-target drugs able to simultaneously inhibit the aforementioned proteins, enabling the discovery of wide-spectrum anti-inflammatory agents. This work reports the first multicondition model based on quantitative structure–activity relationships and a multilayer perceptron neural network (mtc-QSAR-MLP) for the virtual screening of agency-regulated chemicals as versatile anti-inflammatory therapeutics. The mtc-QSAR-MLP model displayed accuracy higher than 88%, and was interpreted from a physicochemical and structural point of view. When using the mtc-QSAR-MLP model as a virtual screening tool, we could identify several agency-regulated chemicals as dual inhibitors of caspase-1 and TNF-alpha, and the experimental information later retrieved from the scientific literature converged with our computational results. This study supports the capabilities of our mtc-QSAR-MLP model in anti-inflammatory therapy with direct applications to current health issues such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Correspondence:
| | - Valeria V. Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe shosse 11, 125080 Moscow, Russia;
| | - Marcus T. Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
13
|
Halder AK, Cordeiro MNDS. Multi-Target In Silico Prediction of Inhibitors for Mitogen-Activated Protein Kinase-Interacting Kinases. Biomolecules 2021; 11:1670. [PMID: 34827668 PMCID: PMC8615736 DOI: 10.3390/biom11111670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
The inhibitors of two isoforms of mitogen-activated protein kinase-interacting kinases (i.e., MNK-1 and MNK-2) are implicated in the treatment of a number of diseases including cancer. This work reports, for the first time, a multi-target (or multi-tasking) in silico modeling approach (mt-QSAR) for probing the inhibitory potential of these isoforms against MNKs. Linear and non-linear mt-QSAR classification models were set up from a large dataset of 1892 chemicals tested under a variety of assay conditions, based on the Box-Jenkins moving average approach, along with a range of feature selection algorithms and machine learning tools, out of which the most predictive one (>90% overall accuracy) was used for mechanistic interpretation of the likely inhibition of MNK-1 and MNK-2. Considering that the latter model is suitable for virtual screening of chemical libraries-i.e., commercial, non-commercial and in-house sets, it was made publicly accessible as a ready-to-use FLASK-based application. Additionally, this work employed a focused kinase library for virtual screening using an mt-QSAR model. The virtual hits identified in this process were further filtered by using a similarity search, in silico prediction of drug-likeness, and ADME profiles as well as synthetic accessibility tools. Finally, molecular dynamic simulations were carried out to identify and select the most promising virtual hits. The information gathered from this work can supply important guidelines for the discovery of novel MNK-1/2 inhibitors as potential therapeutic agents.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV-REQUIMTE/Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713212, India
| | | |
Collapse
|
14
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|