1
|
Nan X, Zhang J, Wang X, Kang T, Cao X, Hao J, Jia Q, Qin B, Mei S, Xu Z. Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting. MICROMACHINES 2023; 14:1561. [PMID: 37630097 PMCID: PMC10456708 DOI: 10.3390/mi14081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Dielectrophoresis technology is applied to microfluidic chips to achieve microscopic control of cells. Currently, microfluidic chips based on dielectrophoresis have certain limitations in terms of cell sorting species, in order to explore a microfluidic chip with excellent performance and high versatility. In this paper, we designed a microfluidic chip that can be used for continuous cell sorting, with the structural design of a curved channel and curved double side electrodes. CM factors were calculated for eight human healthy blood cells and cancerous cells using the software MyDEP, the simulation of various blood cells sorting and the simulation of the joule heat effect of the microfluidic chip were completed using the software COMSOL Multiphysics. The effect of voltage and inlet flow velocity on the simulation results was discussed using the control variables method. We found feasible parameters from simulation results under different voltages and inlet flow velocities, and the feasibility of the design was verified from multiple perspectives by measuring cell movement trajectories, cell recovery rate and separation purity. This paper provides a universal method for cell, particle and even protein sorting.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Qikun Jia
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Bolin Qin
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Shixuan Mei
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China; (J.Z.); (X.W.); (T.K.); (X.C.); (J.H.); (Q.J.); (B.Q.); (S.M.); (Z.X.)
| |
Collapse
|
2
|
Jiang Z, Zhuang Y, Guo S, Sohan ASMMF, Yin B. Advances in Microfluidics Techniques for Rapid Detection of Pesticide Residues in Food. Foods 2023; 12:2868. [PMID: 37569137 PMCID: PMC10417549 DOI: 10.3390/foods12152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are transferred through the food chain to human consumption. Foods contaminated with pesticide residues pose a serious risk to human health, including carcinogenicity, neurotoxicity, and endocrine disruption. Although traditional methods, including gas chromatography, high-performance liquid chromatography, chromatography, and mass spectrometry, can be used to achieve a quantitative analysis of pesticide residues, the disadvantages of these techniques, such as being time-consuming and costly and requiring specialist staff, limit their application. Therefore, there is a need to develop rapid, effective, and sensitive equipment for the quantitative analysis of pesticide residues in food. Microfluidics is rapidly emerging in a number of fields due to its outstanding strengths. This paper summarizes the application of microfluidic techniques to pyrethroid, carbamate, organochlorine, and organophosphate pesticides, as well as to commercial products. Meanwhile, the study also outlines the development of microfluidics in combination with 3D printing technology and nanomaterials for detecting pesticide residues in food.
Collapse
Affiliation(s)
- Zhuoao Jiang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - Yu Zhuang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - Shentian Guo
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| | - A. S. M. Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (Z.J.); (Y.Z.); (S.G.)
| |
Collapse
|
3
|
Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V. Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering (Basel) 2023; 10:760. [PMID: 37508788 PMCID: PMC10376516 DOI: 10.3390/bioengineering10070760] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh Kumar Singh
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kajal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Hu X, Zhao J, Cheng X, Wang X, Zhang X, Chen Y. Polydopamine-mediated quantity-based magnetic relaxation sensing for the rapid and sensitive detection of chloramphenicol in fish samples. Food Res Int 2022; 162:111919. [DOI: 10.1016/j.foodres.2022.111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
|
5
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|
6
|
Yin B, Wan X, Sohan ASMMF, Lin X. Microfluidics-Based POCT for SARS-CoV-2 Diagnostics. MICROMACHINES 2022; 13:mi13081238. [PMID: 36014162 PMCID: PMC9413395 DOI: 10.3390/mi13081238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
A microfluidic chip is a tiny reactor that can confine and flow a specific amount of fluid into channels of tens to thousands of microns as needed and can precisely control fluid flow, pressure, temperature, etc. Point-of-care testing (POCT) requires small equipment, has short testing cycles, and controls the process, allowing single or multiple laboratory facilities to simultaneously analyze biological samples and diagnose infectious diseases. In general, rapid detection and stage assessment of viral epidemics are essential to overcome pandemic situations and diagnose promptly. Therefore, combining microfluidic devices with POCT improves detection efficiency and convenience for viral disease SARS-CoV-2. At the same time, the POCT of microfluidic chips increases user accessibility, improves accuracy and sensitivity, shortens detection time, etc., which are beneficial in detecting SARS-CoV-2. This review shares recent advances in POCT-based testing for COVID-19 and how it is better suited to help diagnose in response to the ongoing pandemic.
Collapse
Affiliation(s)
- Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (X.W.); (A.S.M.M.F.S.)
- Correspondence: (B.Y.); (X.L.); Tel.: +86-189-1118-5500 (B.Y.); +86-182-2266-7931 (X.L.)
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (X.W.); (A.S.M.M.F.S.)
| | | | - Xiaodong Lin
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Correspondence: (B.Y.); (X.L.); Tel.: +86-189-1118-5500 (B.Y.); +86-182-2266-7931 (X.L.)
| |
Collapse
|
7
|
Yin BF, Wan XH, Yang MZ, Qian CC, Sohan ASMMF. Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections. Mil Med Res 2022; 9:8. [PMID: 35144683 PMCID: PMC8831027 DOI: 10.1186/s40779-022-00368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Early diagnosis and classification of infections increase the cure rate while decreasing complications, which is significant for severe infections, especially for war surgery. However, traditional methods rely on laborious operations and bulky devices. On the other hand, point-of-care (POC) methods suffer from limited robustness and accuracy. Therefore, it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements. METHODS We developed a wave-shaped microfluidic chip (WMC) assisted multiplexed detection platform (WMC-MDP). WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents. We further combined the detection platform with the streptavidin-biotin (SA-B) amplified system to enhance the sensitivity while using chemiluminescence (CL) intensity as signal readout. We realized simultaneous detection of C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) on the detection platform and evaluated the sensitivity, linear range, selectivity, and repeatability. Finally, we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits. RESULTS Detection of CRP, PCT, and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25-40 μg/ml, 0.4-12.8 ng/ml, and 50-1600 pg/ml, respectively. The limit of detection of CRP, PCT, and IL-6 were 0.54 μg/ml, 0.11 ng/ml, and 16.25 pg/ml, respectively. WMC-MDP is capable of good adequate selectivity and repeatability. The whole detection procedure takes only 22 min that meets the requirements of a POC device. Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits. CONCLUSIONS WMC-MDP allows simultaneous, rapid, and sensitive detection of CRP, PCT, and IL-6 with satisfactory selectivity and repeatability, requiring minimal manipulation. However, WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10% enabling WMC-MDP to be a type of point-of-care testing (POCT). Therefore, WMC-MDP provides a promising alternative to POCT of multiple biomarkers. We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.
Collapse
Affiliation(s)
- Bin-Feng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Xin-Hua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ming-Zhu Yang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, 100005, China
| | - Chang-Cheng Qian
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | | |
Collapse
|
8
|
Ahi EE, Torul H, Zengin A, Sucularlı F, Yıldırım E, Selbes Y, Suludere Z, Tamer U. A capillary driven microfluidic chip for SERS based hCG detection. Biosens Bioelectron 2022; 195:113660. [PMID: 34592500 DOI: 10.1016/j.bios.2021.113660] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/10/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
In this study, a capillary driven microfluidic chip-based immunoassay was developed for the determination of Human Chorionic Gonadotropin (hCG) protein, which is prohibited by the World Anti-Doping Agency (WADA). Here, we used antibody modified magnetic metal organic framework nanoparticles (MMOFs) as a capture prob in urine sample. MMOF captured hCG was transferred in a capillary driven microfluidic chip consisting of four chambers, and the interaction of MMOF with gold nanorods labelled with 5,5'-Dithiobis-(2-nitrobenzoic acid) (DTNB) as a Raman label was carried out in the capillary driven microfluidic chip. The movement of MMOF through first chamber to the last chamber was achieved with a simple magnet. In the last chamber of capillary driven microfluidic chip, SERS signals of DTNB molecules from the sandwich complex were recorded using a Raman spectrophotometer. The selectivity of the developed method was demonstrated by applying the same procedure for the detection of Human Luteinizing Hormone (hLH), Human Chorionic Gonadotropin Hormone (hGH) and Immunoglobulin G (IgG) protein. The regression coefficient and limit of detection obtained from the standard addition method were found as 0,9985 and 0,61 IU/L, respectively. Furthermore, the conventional ELISA method confirmed that the results obtained by the presented method were acceptable with the similarity of 97.9% in terms of average recovery value, for the detection of hCG in urine samples. The analysis system developed for target proteins will be an alternative technique such as Western Blot used in routine analysis that is expensive and time consuming.
Collapse
Affiliation(s)
- Elçin Ezgi Ahi
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Kocaeli, Turkey
| | - Hilal Torul
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330, Ankara, Turkey
| | - Adem Zengin
- Van Yüzüncü Yıl University, Faculty of Science, Department of Chemistry, 65080, Van, Turkey
| | - Ferah Sucularlı
- Aselsan A.Ş., Radar, Electronic Warfare Systems Business Sector, 06200, Ankara, Turkey
| | - Ender Yıldırım
- Department of Mechanical Engineering, Faculty of Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Yeşim Selbes
- Hacettepe University, Doping Control Center, 06100, Ankara, Turkey
| | - Zekiye Suludere
- Gazi University, Faculty of Science, Department of Biology, 06500, Ankara, Turkey
| | - Uğur Tamer
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, 06330, Ankara, Turkey.
| |
Collapse
|
9
|
Yin B, Yue W, Sohan ASMM, Zhou T, Qian C, Wan X. Micromixer with Fine-Tuned Mathematical Spiral Structures. ACS OMEGA 2021; 6:30779-30789. [PMID: 34805706 PMCID: PMC8600618 DOI: 10.1021/acsomega.1c05024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Micromixers with the microchannel structure can enable rapid and efficient mixing of multiple types of fluids on a microfluidic chip. Herein, we report the mixing performance of three passive micromixers based on the different mathematical spiral structures. We study the fluid flow characteristics of Archimedes spiral, Fermat spiral, and hyperbolic spiral structures with various channel widths and Reynolds number (Re) ranging from 0 to 10 via numerical simulation and visualization experiments. In addition, we analyze the mechanism of streamlines and Dean vortices at different cross sections during fluid flows. As the fluid flows in the Fermat spiral channel, the centrifugal force induces the Dean vortex to form a chaotic advection, enhancing the fluid mixing performance. By integrating the Fermat spiral channel into a microfluidic chip, we successfully detect acute myocardial infarction (AMI) marker with the double-antibody sandwich method and reduce the detection time to 10 min. This method has a low reagent consumption and a high reaction efficiency and demonstrates great potential in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Binfeng Yin
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenkai Yue
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | | | - Teng Zhou
- Mechanical
and Electrical Engineering College, Hainan
University, Haikou 570228, China
| | - Changcheng Qian
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinhua Wan
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
10
|
Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions. MICROMACHINES 2021; 12:mi12111380. [PMID: 34832792 PMCID: PMC8622971 DOI: 10.3390/mi12111380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and has potential practical implementations in biochemical detection and biological computing.
Collapse
|
11
|
Yin B, Wan X, Qian C, Sohan ASMMF, Wang S, Zhou T. Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip. Front Chem 2021; 9:741058. [PMID: 34671590 PMCID: PMC8521045 DOI: 10.3389/fchem.2021.741058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.
Collapse
Affiliation(s)
- Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Changcheng Qian
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | | | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, China
| |
Collapse
|