1
|
Rajput SS, Raghuvanshi N, Banana T, Yadav P, Alam MM. Why does the orientation of azulene affect the two-photon activity of a porphyrinoid-azulene system? Phys Chem Chem Phys 2024; 26:15611-15619. [PMID: 38758026 DOI: 10.1039/d4cp00438h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Attaching a dipolar molecule in a symmetric system induces a major change in the electronic structure, which may be reflected as the enhancement of the optical and charge-transfer properties of the combined system as compared to the pristine ones. Furthermore, the orientation of the dipolar molecule may also affect the said properties. This idea is explored in this work by taking porphyrinoid molecules as the pristine systems. We attached azulene, a dipolar molecule, at various positions of five porphyrinoid cores and studied the effect on charge-transfer and one- and two-photon absorption properties using the state-of-the-art RICC2 method. The attachment of azulene produces two major effects - firstly it introduces asymmetry in the system and, secondly, being dipolar, it makes the resultant molecule dipolar/quadrupolar. Porphyrin, N-confused porphyrin, sub-porphyrin, sapphyrin, and hexaphyrin are used as core porphyrinoid systems. The change in charge-transfer has been studied using the orbital analysis and charge-transfer distance parameter for the first five singlet states of the systems. The effect of orientation of azulene on the said properties is also explored. The insights gained from our observations are explored further at the dipole and transition dipole moment levels using a three-state model.
Collapse
Affiliation(s)
- Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Nikita Raghuvanshi
- Centre for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Pooja Yadav
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| |
Collapse
|
2
|
Alonso M, Bettens T, Eeckhoudt J, Geerlings P, De Proft F. Wandering through quantum-mechanochemistry: from concepts to reactivity and switches. Phys Chem Chem Phys 2023; 26:21-35. [PMID: 38086672 DOI: 10.1039/d3cp04907h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Mechanochemistry has experienced a renaissance in recent years witnessing, at the molecular level, a remarkable interplay between theory and experiment. Molecular mechanochemistry has welcomed a broad spectrum of quantum-chemical methods to evaluate the influence of an external mechanical force on molecular properties. In this contribution, an overview is given on recent work on quantum mechanochemistry in the Brussels Quantum Chemistry group (ALGC). The effect of an external force was scrutinized both in fundamental topics, like reactivity descriptors in Conceptual DFT, and in applied topics, such as designing molecular force probes and tuning the stereoselectivity of certain types of reactions. In the conceptual part, a brief overview of the techniques introducing mechanical forces into a quantum-mechanical description of a molecule is followed by an introduction to conceptual DFT. The evolution of the electronic chemical potential (or electronegativity), chemical hardness and electrophilicity are investigated when a chemical bond in a series of diatomics is put under mechanical stress. Its counterpart, the influence of mechanical stress on bond angles, is analyzed by varying the strain present in alkyne triple bonds by applying a bending force, taking the strain promoted alkyne-azide coupling cycloaddition as an example. The increase of reactivity of the alkyne upon bending is probed by Fukui functions and the local softness. In the applied part, a new molecular force probe is presented based on an intramolecular 6π-electrocyclization in constrained polyenes operating under thermal conditions. A cyclic process is conceived where ring opening and closure are triggered by applying or removing an external pulling force. The efficiency of mechanical activation strongly depends on the magnitude of the applied force and the distance between the pulling points. The idea of pulling point distances as a tool to identify new mechanochemical processes is then tested in [28]hexaphyrins with an intricate equilibrium between Möbius aromatic and Hückel antiaromatic topologies. A mechanical force is shown to trigger the interconversion between the two topologies, using the distance matrix as a guide to select appropriate pulling points. In a final application, the Felkin-Anh model for the addition of nucleophiles to chiral carbonyls under the presence of an external mechanical force is scrutinized. By applying a force for restricting the conformational freedom of the chiral ketone, otherwise inaccessible reaction pathways are promoted on the force-modified potential energy surfaces resulting in a diastereoselectivity different from the force-free reaction.
Collapse
Affiliation(s)
- Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Tom Bettens
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Jochen Eeckhoudt
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Paul Geerlings
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
3
|
Desmedt E, Serrano Gimenez L, De Vleeschouwer F, Alonso M. Application of Inverse Design Approaches to the Discovery of Nonlinear Optical Switches. Molecules 2023; 28:7371. [PMID: 37959795 PMCID: PMC10647741 DOI: 10.3390/molecules28217371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Molecular switches, in which a stimulus induces a large and reversible change in molecular properties, are of significant interest in the domain of photonics. Due to their commutable redox states with distinct nonlinear optical (NLO) properties, hexaphyrins have emerged as a novel platform for multistate switches in nanoelectronics. In this study, we employ an inverse design algorithm to find functionalized 26R→28R redox switches with maximal βHRS contrast. We focus on the role of core modifications, since a synergistic effect with meso-substitutions was recently found for the 30R-based switch. In contrast to these findings, the inverse design optima and subsequent database analysis of 26R-based switches confirm that core modifications are generally not favored when high NLO contrasts are targeted. Moreover, while push-pull combinations enhance the NLO contrast for both redox switches, they prefer a different arrangement in terms of electron-donating and electron-withdrawing functional groups. Finally, we aim at designing a three-state 26R→28R→ 30R switch with a similar NLO response for both ON states. Even though our best-performing three-state switch follows the design rules of the 30R-based component, our chemical compound space plots show that well-performing three-state switches can be found in regions shared by high-responsive 26R and 30R structures.
Collapse
Affiliation(s)
| | | | - Freija De Vleeschouwer
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; (E.D.); (L.S.G.)
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; (E.D.); (L.S.G.)
| |
Collapse
|
4
|
Desmedt E, Smets D, Woller T, Alonso M, De Vleeschouwer F. Designing hexaphyrins for high-potential NLO switches: the synergy of core-modifications and meso-substitutions. Phys Chem Chem Phys 2023. [PMID: 37162298 DOI: 10.1039/d3cp01240a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Due to the enormous size of the chemical compound space, usually only small regions are traversed with traditional direct molecular design approaches making the discovery for novel functionalized molecules for nonlinear optical applications challenging. By applying inverse molecular design algorithms, we aim to efficiently explore larger regions of the compound space in search of promising hexaphyrin-based molecular switches as measured by their first-hyperpolarizability (βHRS) contrast. We focus on the 28R → 30R switch with a functionalization pattern allowing for centrosymmetric OFF states yielding zero βHRS response. This switch is particularly challenging as full meso-substitution with a single type of functional group or core-modifications result in almost no contrast enhancement. We carried out four inverse design procedures during which two sets of core-modifications and three sets of meso-substitutions sites were systematically optimized. All 4 optimal switches are characterized by a mix of meso-substitutions and core-modifications, of which the best performing switch yields a 10-fold improvement over the parent macrocycle. Throughout the inverse design procedures, we collected and analyzed a database biased towards high NLO contrasts that contains 277 different patterns for hexaphyrin-based switches. We derived three design rules to obtain highly functional 28R → 30R NLO switches: (I) a combination of 2 strong EWG and 1 EDG group is the ideal recipe for increasing the NLO contrast, though their position also plays an important role. (II) The type of core-modification is less important when only the diagonal positions are core-modified. Switches with 4 core-modifications show a clear preference for oxygen. (III) Keeping centrosymmetry in the OFF state remains highly beneficial given the investigated functionalization pattern. Finally, we have demonstrated that combining meso-substitutions with core-modifications can synergistically improve the NLO contrast.
Collapse
Affiliation(s)
- Eline Desmedt
- Department of General Chemistry Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - David Smets
- Department of General Chemistry Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Tatiana Woller
- Department of General Chemistry Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Mercedes Alonso
- Department of General Chemistry Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Freija De Vleeschouwer
- Department of General Chemistry Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
5
|
Wei W, Zhao ZX, Xia BH, Li W. Theoretical analysis of expanded porphyrins: Aromaticity, stability, and optoelectronic properties. Front Chem 2022; 10:948632. [PMID: 36118314 PMCID: PMC9476321 DOI: 10.3389/fchem.2022.948632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Expanded porphyrin systems are capable of binding a variety of substrates due to their increased cavity size and aromatic nature, holding important applications as magnetic resonance imaging contrast agents and as sensitizers for photodynamic therapy. It is there of fundamental interest to know the photoelectrical properties of expanded porphyrins using quantum chemistry calculations. In this work, we theoretically designed and screened a series of expanded porphyrins by incorporating terthiophene (TTH) and dithienothiophene (DTT) moieties. Our calculations showed that all the designed molecules exhibit excellent optoelectronic performance than the reference molecule. It is suggested that the porphyrin molecule with TTH moiety has better stability than the one with DTT moiety. Finally, we demonstrated that molecule 2 features with TTH moiety and the inverted selenophene ring outperform other molecules because it exhibits increased HOMO-LUMO gap, planar geometry, and strengthened aromaticity. We expect that this work can provide theoretical guidelines for the design of novel porphyrin materials.
Collapse
Affiliation(s)
- Wei Wei
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Wei Wei, ; Wei Li,
| | - Zeng-Xia Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Bao-Hui Xia
- College of Chemistry, Jilin University, Changchun, China
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
- *Correspondence: Wei Wei, ; Wei Li,
| |
Collapse
|
6
|
Beaujean P, Sanguinet L, Rodriguez V, Castet F, Champagne B. Multi-State Second-Order Nonlinear Optical Switches Incorporating One to Three Benzazolo-Oxazolidine Units: A Quantum Chemistry Investigation. Molecules 2022; 27:2770. [PMID: 35566119 PMCID: PMC9105456 DOI: 10.3390/molecules27092770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
This contribution employs quantum chemistry methods to describe the variations of the second nonlinear optical responses of molecular switches based on benzazolo-oxazolidine (BOX) units, connected by π-linkers, along their successive opening/closing. Under the fully closed forms, all of them display negligible first hyperpolarizability (β) values. When one BOX is opened, which is sketched as C→O, a push-pull π-conjugated segment is formed, having the potential to enhance β and to set the depolarization ratio (DR) to its one-dimensional-like value (DR = 5). This is observed when only one BOX is open, either for the monoBOX species (C→O) or for the diBOX (CC→CO) and triBOX (CCC→CCO) compounds, i.e., when the remaining BOXs stay closed. The next BOX openings have much different effects. For the diBOXs, the second opening (CO→OO) is associated with a decrease of β, and this decrease is tuned by controlling the conformation of the π-linker, i.e., the centrosymmetry of the whole compound because β vanishes in centrosymmetric compounds. For the triBOXs, the second opening gives rise to a Λ-shape compound, with a negligible change of β, but a decrease of the DR whereas, along the third opening, β remains similar and the DR decreases to the typical value of octupolar systems (DR = 1.5).
Collapse
Affiliation(s)
- Pierre Beaujean
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, B-5000 Namur, Belgium;
| | - Lionel Sanguinet
- MOLTECH-Anjou (CNRS-UMR 6200), Université d’Angers, F-49045 Angers, France;
| | - Vincent Rodriguez
- CNRS, Bordeaux INP, ISM, Univ. Bordeaux, UMR 5255, F-33400 Talence, France; (V.R.); (F.C.)
| | - Frédéric Castet
- CNRS, Bordeaux INP, ISM, Univ. Bordeaux, UMR 5255, F-33400 Talence, France; (V.R.); (F.C.)
| | - Benoît Champagne
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, B-5000 Namur, Belgium;
| |
Collapse
|