1
|
Qu HT, Partanen I, Chang KH, Lin YD, Koshevoy IO, Belyaev A, Chou PT. Insights into the photoinduced anion translocation of donor-π-acceptor + (ion) - molecules. Chem Sci 2024; 15:20045-20055. [PMID: 39568931 PMCID: PMC11575608 DOI: 10.1039/d4sc04738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
By strategic design and synthesis of a new series of phosphonium salts (compounds 1-7[OTf]), where [OTf]- stands for the trifluoromethanesulfonate anion, we performed comprehensive spectroscopic and dynamic studies on the photoinduced anion migration in toluene. Our aim is to probe if the anion migration is associated with an intrinsic barrier or is barrier-free. After the occurrence of excited-state intramolecular charge transfer (ESICT) in 1-7, the charge redistribution of the cation triggers the translocation of the counter anion [OTf]-, resulting in emission spectral temporal evolution. As a result, we describe the photoinduced anion migration by introducing spectral response function C(t), a concept adopted from the solvent diffusional relaxation. The experimental results indicate that the anion migration lacks an intrinsic barrier, i.e., the relaxation dynamics can be described by a biased Brownian motion along the charge transfer direction. The experimental findings are also qualitatively supported by theoretical calculations including restrained electrostatic potential (RESP) and hole-electron distribution analyses.
Collapse
Affiliation(s)
- Hao-Ting Qu
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| | - Iida Partanen
- Department of Chemistry, University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| | - Yan-Ding Lin
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| | - Andrey Belyaev
- Department of Chemistry, University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
- Department of Chemistry/Nanoscience Center, University of Jyväskylä Survontie 9C 40014 Jyväskylä Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| |
Collapse
|
2
|
Andreoni L, Groppi J, Seven Ö, Baroncini M, Credi A, Silvi S. Directional Ring Translocation in a pH- and Redox-Driven Tristable [2]Rotaxane. Angew Chem Int Ed Engl 2024:e202414609. [PMID: 39302658 DOI: 10.1002/anie.202414609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
We describe the synthesis and characterization of a [2]rotaxane comprising a dibenzo-24-crown-8 (DB24C8) macrocyclic component and a thread containing three recognition sites: ammonium (AmH+), bipyridinium (Bpy2+) and triazolium (Trz+). AmH+ and Bpy2+ are responsive to fully orthogonal stimuli, pH and electrochemical, which allows to precisely control the directional translation of the macrocycle along the axle. A better understanding of the processes driving the operation of the system was obtained thanks to an in-depth thermodynamic characterization. Orthogonal stimuli responsive tristable rotaxanes represent the starting point for the creation of linear motors and the development of molecular logic gates.
Collapse
Affiliation(s)
- Leonardo Andreoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, 40129, Bologna, Italy
| | - Özlem Seven
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, 40129, Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 44, 40127, Bologna, Italy
| | - Alberto Credi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Institute ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
3
|
Yang Z, Wang X, Penocchio E, Ragazzon G, Chen X, Lu S, Zhou Y, Fu K, Liu Z, Cai Y, Yu X, Li X, Li X, Feng W, Yuan L. Beyond Single-Cycle Autonomous Molecular Machines: Light-Powered Shuttling in a Multi-Cycle Reaction Network. Angew Chem Int Ed Engl 2024:e202414072. [PMID: 39152651 DOI: 10.1002/anie.202414072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Biomolecular machines autonomously convert energy into functions, driving systems away from thermodynamic equilibrium. This energy conversion is achieved by leveraging complex, kinetically asymmetric chemical reaction networks that are challenging to characterize precisely. In contrast, all known synthetic molecular systems in which kinetic asymmetry has been quantified are well described by simple single-cycle networks. Here, we report on a unique light-driven [2]rotaxane that enables the autonomous operation of a synthetic molecular machine with a multi-cycle chemical reaction network. Unlike all prior systems, the present one exploits a photoactive macrocycle, which features a different photoreactivity depending on the binding sites at which it resides. Furthermore, E to Z isomerization reverses the relative affinity of the macrocycle for two binding sites on the axle, resulting in a multi-cycle network. Building on the most recent theoretical advancements, this work quantifies kinetic asymmetry in a multi-cycle network for the first time. Our findings represent the simplest rotaxane capable of autonomous shuttling developed so far and offer a general strategy to generate and quantify kinetic asymmetry beyond single-cycle systems.
Collapse
Affiliation(s)
- Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xirui Wang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Giulio Ragazzon
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 67000, Strasbourg, France
| | - Xinnan Chen
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kuirong Fu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yimin Cai
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Yamane R, Asai Y, Takiguchi N, Okamoto A, Kawano S, Tokunaga Y, Shizuma M, Muraoka M. Acid-base responsive molecular switching of a [2]rotaxane incorporating two different stations in an axle component. RSC Adv 2024; 14:19780-19786. [PMID: 38903675 PMCID: PMC11188621 DOI: 10.1039/d4ra03532a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Interlocked compounds such as rotaxanes and catenanes exhibit unique kinetic properties in response to external chemical or physical stimuli and are therefore expected to be applied to molecular machines and molecular sensors. To develop a novel rotaxane for this application, an isophthalamide macrocycle and a neutral phenanthroline axle were used. Stable pseudorotaxanes are known to be formed using hydrogen bonds and π-π interactions. In this study, we designed a non-symmetric axial molecule and synthesized a [2]rotaxane with the aim of introducing two different stations; a phenanthroline and a secondary amine/ammonium unit. Furthermore, 1H NMR measurements demonstrated that the obtained rotaxane acts as a molecular switch upon application of external acid/base stimuli.
Collapse
Affiliation(s)
- Risa Yamane
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Yuki Asai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Nanami Takiguchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Ayuna Okamoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| | - Shintaro Kawano
- Osaka Research Institute of Industrial Science and Technology Joto-ku Osaka 536-8553 Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui Bunkyo Fukui 910-8507 Japan
| | - Motohiro Shizuma
- Osaka Research Institute of Industrial Science and Technology Joto-ku Osaka 536-8553 Japan
| | - Masahiro Muraoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Asahi-ku Osaka 535-8585 Japan
| |
Collapse
|
5
|
McCarthy DR, Xu K, Schenkelberg ME, Balegamire NAN, Liang H, Bellino SA, Li J, Schneebeli ST. Kinetically controlled synthesis of rotaxane geometric isomers. Chem Sci 2024; 15:4860-4870. [PMID: 38550687 PMCID: PMC10967009 DOI: 10.1039/d3sc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 04/30/2024] Open
Abstract
Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.
Collapse
Affiliation(s)
- Dillon R McCarthy
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Ke Xu
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Mica E Schenkelberg
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Nils A N Balegamire
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Huiming Liang
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Shea A Bellino
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Severin T Schneebeli
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
6
|
Mukherjee A, Ghosh G. Light-regulated morphology control in supramolecular polymers. NANOSCALE 2024; 16:2169-2184. [PMID: 38206133 DOI: 10.1039/d3nr04989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Stimuli-responsive materials have gained significant recent interest owing to their versatility and wide applications in fields ranging from materials science to biology. In the majority of examples, external stimuli, including light, act as a remote source of energy to depolymerize/deconstruct certain nanostructures or provide energy for exploring their functional features. However, there is little emphasis on the creation and precise control of these materials. Although significant progress has been made in the last few decades in understanding the pros and cons of various directional non-covalent interactions and their specific molecular recognition ability, it is only in the recent past that the focus has shifted toward controlling the dimension, dispersity, and other macroscopic properties of supramolecular assemblies. Control over the morphology of supramolecular polymers is extremely crucial not only for material properties they manifest but also for effective interactions with biological systems for their potential application in the field of biomedicine. This could effectively be achieved using photoirradiation which has been demonstrated by some recent reports. The concept as such offers a broad scope for designing versatile stimuli-responsive supramolecular materials with precise structure-property control. However, there has not yet been a compilation that focuses on the present subject of employing light to impact and regulate the morphology of supramolecular polymers or categorize the functional motif for easy understanding. In this review, we have collated recent examples of how light irradiation can tune the morphology and nanostructures of supramolecular polymers and categorized them based on their chemical transformation such as cis-trans isomerization, cycloaddition, and photo-cleavage. We have also established a direct correlation among the structures of the building blocks, mesoscopic properties and functional behavior of such materials and suggested future directions.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149 Münster, Germany
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
| |
Collapse
|
7
|
Sørensen J, Hansen EL, Larsen D, Elmquist MA, Buchleithner A, Florean L, Beeren SR. Light-controlled enzymatic synthesis of γ-CD using a recyclable azobenzene template. Chem Sci 2023; 14:7725-7732. [PMID: 37476725 PMCID: PMC10355107 DOI: 10.1039/d3sc01997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclodextrins (CDs) are important molecular hosts for hydrophobic guests in water and extensively employed in the pharmaceutical, food and cosmetic industries to encapsulate drugs, flavours and aromas. Compared with α- and β-CD, the wide-scale use of γ-CD is currently limited due to costly production processes. We show how the yield of γ-CD in the enzymatic synthesis of CDs can be increased 5-fold by adding a tetra-ortho-isopropoxy-substituted azobenzene template irradiated at 625 nm (to obtain the cis-(Z)-isomer) to direct the synthesis. Following the enzymatic reaction, the template can then be readily recovered from the product mixture for use in subsequent reaction cycles. Heating induces thermal cis-(Z) to trans-(E) relaxation and consequent dissociation from γ-CD whereupon the template can then be precipitated by acidification. For this study we designed and synthesised a set of three water-soluble azobenzene templates with different ortho-substituents and characterised their photoswitching behaviour using UV/vis and NMR spectroscopy. The templates were tested in cyclodextrin glucanotransferase-mediated dynamic combinatorial libraries (DCLs) of cyclodextrins while irradiating at different wavelengths to control the cis/trans ratios. To rationalise the behaviour of the DCLs, NMR titrations were carried out to investigate the binding interactions between α-, β- and γ-CD and the cis and trans isomers of each template.
Collapse
Affiliation(s)
- Juliane Sørensen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Emilie Ljungberg Hansen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Dennis Larsen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Mathias Albert Elmquist
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Andreas Buchleithner
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Luca Florean
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| |
Collapse
|
8
|
Saura‐Sanmartin A, Schalley CA. The Mobility of Homomeric Lasso‐ and Daisy Chain‐Like Rotaxanes in Solution and in the Gas Phase as a means to Study Structure and Switching Behaviour. Isr J Chem 2023. [DOI: 10.1002/ijch.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Química Orgánica Facultad de Química Universidad de Murcia Calle Campus Universitario, 5 30100 Murcia Spain
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| |
Collapse
|
9
|
Kundu S, Mondal D, Elramadi E, Valiyev I, Schmittel M. Parallel Allosteric Inhibition of Shuttling Motion and Catalysis in a Silver(I)-loaded [2]Rotaxane. Org Lett 2022; 24:6609-6613. [PMID: 36053156 DOI: 10.1021/acs.orglett.2c02609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A dynamic silver(I)-loaded [2]rotaxane shuttle (k298 = 135 kHz) was converted allosterically into a conformationally restricted [2]rotaxane due to the creation of a bulky imine in the center of the axle component. Only the dynamic silver(I)-loaded [2]rotaxane was able to catalyze a 6-endo-cyclization reaction, whereas the static one was catalytically quiet. The mechanism of catalyst deactivation was elucidated.
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Isa Valiyev
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
10
|
Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. Int J Mol Sci 2022; 23:ijms23148041. [PMID: 35887385 PMCID: PMC9323209 DOI: 10.3390/ijms23148041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Triplet–triplet annihilation upconversion (TTA-UC) is a very promising technology that could be used to convert low-energy photons to high-energy ones and has been proven to be of great value in various areas. Porphyrins have the characteristics of high molar absorbance, can form a complex with different metal ions and a high proportion of triplet states as well as tunable structures, and thus they are important sensitizers for TTA-UC. Porphyrin-based TTA-UC plays a pivotal role in the TTA-UC systems and has been widely used in many fields such as solar cells, sensing and circularly polarized luminescence. In recent years, applications of porphyrin-based TTA-UC systems for photoinduced reactions have emerged, but have been paid little attention. As a consequence, this review paid close attention to the recent advances in the photoreactions triggered by porphyrin-based TTA-UC systems. First of all, the photochemistry of porphyrin-based TTA-UC for chemical transformations, such as photoisomerization, photocatalytic synthesis, photopolymerization, photodegradation and photochemical/photoelectrochemical water splitting, was discussed in detail, which revealed the different mechanisms of TTA-UC and methods with which to carry out reasonable molecular innovations and nanoarchitectonics to solve the existing problems in practical application. Subsequently, photoreactions driven by porphyrin-based TTA-UC for biomedical applications were demonstrated. Finally, the future developments of porphyrin-based TTA-UC systems for photoreactions were briefly discussed.
Collapse
|
11
|
Saura-Sanmartin A. Photoresponsive Metal-Organic Frameworks as Adjustable Scaffolds in Reticular Chemistry. Int J Mol Sci 2022; 23:7121. [PMID: 35806126 PMCID: PMC9266399 DOI: 10.3390/ijms23137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The easy and remote switching of light makes this stimulus an ideal candidate for a large number of applications, among which the preparation of photoresponsive materials stands out. The interest of several scientists in this area in order to achieve improved functionalities has increase parallel to the growth of the structural complexity of these materials. Thus, metal-organic frameworks (MOFs) turned out to be ideal scaffolds for light-responsive ligands. This review is focused on the integration of photoresponsive organic ligands inside MOF crystalline arrays to prepare enhanced functional materials. Besides the summary of the preparation, properties and applications of these materials, an overview of the future outlook of this research area is provided.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Campus de Espinardo, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|