1
|
Yang X, Pang X, Sun L, Li W, Wang Y, Hua R, Zhu M. A novel "Turn-Off-On" fluorescent probe for specific sequential detection of Cu 2+ and glyphosate and its application in biological imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124420. [PMID: 38728848 DOI: 10.1016/j.saa.2024.124420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
As common pollutants, Cu2+ and glyphosate pose a serious threat to human health and the ecosystem. Herein, a fluorescent probe (E)-7-(diethylamino)-N'(4-(diethylamino)-2-hydroxybenzyl)-2-oxo-2H chromophore-3-carbazide (DDHC) was designed and synthesised for the sequential recognition of Cu2+ and glyphosate. DDHC has the advantages of a short synthesis path, easy-to-obtain raw materials, good anti-interference ability, and strong stability. The interaction of the DDHC-Cu2+ complexes with glyphosate allows the amino and carboxyl groups in glyphosate molecules to coordinate with Cu2+ strongly, competing for the Cu2+ in the DDHC-Cu2+ complexes and releasing the DDHC, leading to the recovery of fluorescence. The recognition was further validated through Job's plot, HRMS, and DFT calculations. In addition, the successful recovery of Cu2+ and glyphosate in different environmental water samples fully demonstrates the practical application potential of DDHC. Especially, DDHC has low cytotoxicity and can enter zebrafish and HeLa cells, rapidly reacting with Cu2+ and glyphosate in the body, generating visible fluorescence quenching and recovery phenomena, achieving real-time visual monitoring of exogenous Cu2+ and glyphosate in zebrafish and HeLa cells. The targeting and dual selectivity of DDHC greatly enhance its potential application value in the field of detection, providing important theoretical support for studying the fate of multiple pollutants in the environment.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiaohui Pang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Wenze Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Rimao Hua
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
2
|
Meng Z, Kuang Z, Song R, Fan J, Wu X, Pan C, Lu R, Zhou W, Gao H. Rapid sequential detection of Al 3+ and glyphosate using an "Off-On-Off" fluorescent probe based on salicylate modified layered double hydroxides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124358. [PMID: 38723462 DOI: 10.1016/j.saa.2024.124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/01/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
A fluorescent probe based on salicylate modified layered double hydroxide (LDH-SA) is presented, enabling the swift sequential detection of Al3+, fosetyl-Al and glyphosate in aqueous environment. The probe was synthesized using a simple co-precipitation procedure, and its properties and synthesis conditions were thoroughly characterized and optimized. A unique "off-on-off" fluorescent response was observed when the probe sequentially interacted with Al3+ and glyphosate, and the detection method based on this phenomenon was established. The limits of detection for Al3+ and glyphosate were determined as 0.03 μmol/L and 0.03 mg/L, respectively, with rapid detection periods of one minute and four minutes. The LDH-SA/Al3+ complex requires Al3+ to generate a chelation-gathered fluorescence effect, which is the mechanism by which it quenches LDH-SA. This is possible due to the inhibition of excited-state intramolecular proton transfer and photoinduced electron transfer processes within LDH-SA after incorporating Al3+. Upon interaction with glyphosate, competitive complexation between glyphosate and Al3+ is initiated, which leads to a recovery of the fluorescence spectrum of LDH-SA and demonstrating the "off-on-off" behavior. An "INHIBIT" logic gate system was devised utilizing the response, indicating potential applications in fluorescence-based devices. Such a rapid, sequential detection capacity is impressive. It attests to the utility of LDH-SA as a probe for Al3+ or glyphosate, and suggests promise for applications in pollutant analysis or environmental monitoring applications.
Collapse
Affiliation(s)
- Zilin Meng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Zichen Kuang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Rui Song
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Jiaxuan Fan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Xingyi Wu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
3
|
Zhao S, Shi L, Zhang X, Sun X, Zhu W, Yu L. An on-off-on fluorescent probe for the detection of glyphosate based on a Cu 2+-assisted squaraine dye sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1341-1346. [PMID: 38334227 DOI: 10.1039/d3ay02128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The herbicide glyphosate, N-(phosphonomethyl)glycine, has been widely used in the past 40 years, and has had many adverse effects on human health. Here, we constructed a convenient "on-off-on" fluorescent platform for detection of glyphosate via Cu2+ modulated squaraine dye fluorescence quenching. The squaraine dye F-0 exhibited strong fluorescence, which could be quenched by the addition of Cu2+. However, the addition of glyphosate restored the fluorescence intensity of F-0 due to the formation of a Cu2+-glyphosate complex. F-0 was utilized as a fluorescent probe for the quantitative detection of glyphosate, with the lowest detection limit of 13.16 nmol L-1. Furthermore, this method demonstrated high selectivity and anti-interference capabilities. The successful monitoring of glyphosate in real samples was achieved using this detection strategy.
Collapse
Affiliation(s)
- Shuhua Zhao
- North China University of Science and Technology, Tangshan, 063210, China
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| | - Lei Shi
- North China University of Science and Technology, Tangshan, 063210, China
| | - Xiufeng Zhang
- North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaoran Sun
- North China University of Science and Technology, Tangshan, 063210, China
| | - Wenxuan Zhu
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
- University of South China, Hengyang, 421001, China.
| | - Lijia Yu
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| |
Collapse
|