1
|
Atta S, Zhao Y, Sanchez S, Vo-Dinh T. A Simple and Sensitive Wearable SERS Sensor Utilizing Plasmonic-Active Gold Nanostars. ACS OMEGA 2024; 9:38897-38905. [PMID: 39310163 PMCID: PMC11411535 DOI: 10.1021/acsomega.4c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Wearable sweat sensors hold great potential for offering detailed health insights by monitoring various biomarkers present in sweat, such as glucose, lactate, uric acid, and urea, in real time. However, most previously reported sensors, primarily based on electrochemical technology, are limited to monitoring only a single analyte at a given time. This study introduces a simple, sensitive, wearable patch based on surface-enhanced Raman spectroscopy (SERS), integrated with highly plasmonically active sharp-branched gold nanostars (GNS) for the simultaneous detection of three sweat biomarkers: lactate, urea, and glucose. We have fabricated the GNS on commercially available adhesive tape, resulting in achieving a low-cost, flexible, and adhesive wearable SERS patch. The limits of detection for lactate, urea, and glucose were achieved at 0.7, 0.6, and 0.7 μM, respectively, which are significantly lower than the clinically relevant concentrations of these biomarkers in sweat. We further evaluated the performance of our wearable SERS patch during outdoor activities, including sitting, walking, and running. To evaluate its overall effectiveness, we simultaneously measured the concentrations of lactate, urea, and glucose during these activities. Overall, our simple, sensitive wearable SERS sensor represents a significant breakthrough by enabling the simultaneous detection of lactate, urea, and glucose present in sweat, marking a major step toward future applications in autonomous and noninvasive personalized healthcare monitoring at home.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yuanhao Zhao
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sanchez
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Hassanzadeh-Barforoushi A, Tukova A, Nadalini A, Inglis DW, Chang-Hao Tsao S, Wang Y. Microfluidic-SERS Technologies for CTC: A Perspective on Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652011 DOI: 10.1021/acsami.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Enumeration and phenotypic profiling of circulating tumor cells (CTCs) provide critical information for clinical diagnosis and treatment monitoring in cancer. To achieve this goal, an integrated system is needed to efficiently isolate CTCs from patient samples and sensitively evaluate their phenotypes. Such integration would comprise a high-throughput single-cell processing unit for the isolation and manipulation of CTCs and a sensitive and multiplexed quantitation unit to detect clinically relevant signals from these cells. Surface-enhanced Raman scattering (SERS) has been used as an analytical method for molecular profiling and in vitro cancer diagnosis. More recently, its multiplexing capability and power to create distinct molecular signatures against their targets have garnered attention. Here, we share our insights into the combined power of microfluidics and SERS in realizing CTC isolation, enumeration, and detection from a clinical translation perspective. We highlight the key operational factors in CTC microfluidic processing and SERS detection from patient samples. We further discuss microfluidic-SERS integration and its clinical utility as a paradigm shift in clinical CTC-based cancer diagnosis and prognostication. Finally, we summarize the challenges and attempt to look forward to what lies ahead of us in potentially translating the technique into real clinical applications.
Collapse
Affiliation(s)
- Amin Hassanzadeh-Barforoushi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Audrey Nadalini
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Simon Chang-Hao Tsao
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Futane A, Senthil M, S J, Srinivasan A, R K, Narayanamurthy V. Sweat analysis for urea sensing: trends and challenges. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4405-4426. [PMID: 37646163 DOI: 10.1039/d3ay01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
With increasing population there is a rise in pathological diseases that the healthcare facilities are grappling with. Sweat-based wearable technologies for continuous monitoring have overcome the demerits associated with sweat sampling and sensing. Hence, sweat as an alternative biofluid holds great promise for the quantification of a host of biomarkers and understanding the functioning of the body, thereby deducing ailments quickly and economically. This comprehensive review accounts for recent advances in sweat-based LOCs (Lab-On-Chips), which are a likely alternative to the existing blood-urea sample testing that is invasive and time-consuming. The present review is focused on the advancements in sweat-based Lab-On-Chips (LOCs) as an alternative to invasive and time-consuming blood-urea sample testing. In addition, different sweat collection methods (direct skin, near skin and microfluidic) and their mechanism for urea sensing are explained in detail. The mechanism of urea in biofluids in protein metabolism, balancing nitrogen levels and a crucial factor of kidney function is described. In the end, research and technological advancements are explained to address current challenges and enable its widespread implementation.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Mallika Senthil
- Department of Biomedical Engineering, Rajalakshmi Engineering, College, Chennai, India 602105
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jayashree S
- Department of Biomedical Engineering, Rajalakshmi Engineering, College, Chennai, India 602105
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kunatan, Pahang, Malaysia
| | - Kalpana R
- Department of Biomedical Engineering, Rajalakshmi Engineering, College, Chennai, India 602105
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research & Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| |
Collapse
|
4
|
Zhang Q, Zhao L, Qi G, Zhang X, Tian C. Raman and fourier transform infrared spectroscopy techniques for detection of coronavirus (COVID-19): a mini review. Front Chem 2023; 11:1193030. [PMID: 37273513 PMCID: PMC10232992 DOI: 10.3389/fchem.2023.1193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Coronavirus pandemic has been a huge jeopardy to human health in various systems since it outbroke, early detection and prevention of further escalation has become a priority. The current popular approach is to collect samples using the nasopharyngeal swab method and then test for RNA using the real-time polymerase chain reaction, which suffers from false-positive results and a longer diagnostic time scale. Alternatively, various optical techniques, namely, optical sensing, spectroscopy, and imaging shows a great promise in virus detection. In this mini review, we briefly summarize the development progress of vibrational spectroscopy techniques and its applications in the detection of SARS-CoV family. Vibrational spectroscopy techniques such as Raman spectroscopy and infrared spectroscopy received increasing appreciation in bio-analysis for their speediness, accuracy and cost-effectiveness in detection of SARS-CoV. Further, an account of emerging photonics technologies of SARS-CoV-2 detection and future possibilities is also explained. The progress in the field of vibrational spectroscopy techniques for virus detection unambiguously show a great promise in the development of rapid photonics-based devices for COVID-19 detection.
Collapse
Affiliation(s)
- Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Guoliang Qi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xiaoru Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Cheng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| |
Collapse
|
5
|
Liu G, Xu G. Facile preparation of conductive carbon-based membranes on dielectric substrates. Front Chem 2023; 11:1152947. [PMID: 37056354 PMCID: PMC10086138 DOI: 10.3389/fchem.2023.1152947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Graphene has attracted much research attention due to its outstanding chemical and physical properties, such as its excellent electronic conductivity, making it as a useful carbon material for a variety of application fields of photoelectric functional devices. Herein, a new method for synthesizing conductive carbon membranes on dielectric substrates via a low-temperature thermodynamic driven process is developed. Although the obtained films exhibit low crystallinity, their electrical, wetting, and optical properties are acceptable in practice, which opens up a new avenue for the growth of carbon membranes and may facilitate the applications of transparent electrodes as potential plasma-free surface-enhanced Raman scattering (SERS) substrates.
Collapse
|
6
|
Kitahama Y, Pancorbo PM, Segawa H, Marumi M, Xiao TH, Hiramatsu K, Yang W, Goda K. Place & Play SERS: sample collection and preparation-free surface-enhanced Raman spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1028-1036. [PMID: 36762487 DOI: 10.1039/d2ay02090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to perform sensitive, real-time, in situ, multiplex chemical analysis is indispensable for diverse applications such as human health monitoring, food safety testing, forensic analysis, environmental sensing, and homeland security. Surface-enhanced Raman spectroscopy (SERS) is an effective tool to offer the ability by virtue of its high sensitivity and rapid label-free signal detection as well as the availability of portable Raman spectrometers. Unfortunately, the practical utility of SERS is limited because it generally requires sample collection and preparation, namely, collecting a sample from an object of interest and placing the sample on top of a SERS substrate to perform a SERS measurement. In fact, not all analytes can satisfy this requirement because the sample collection and preparation process may be undesirable, laborious, difficult, dangerous, costly, or time-consuming. Here we introduce "Place & Play SERS" based on an ultrathin, flexible, stretchable, adhesive, biointegratable gold-deposited polyvinyl alcohol (PVA) nanomesh substrate that enables placing the substrate on top of an object of interest and performing a SERS measurement of the object by epi-excitation without the need for touching, destroying, and sampling it. Specifically, we characterized the sensitivity of the gold/PVA nanomesh substrate in the Place & Play SERS measurement scheme and then used the scheme to conduct SERS measurements of both wet and dry objects under nearly real-world conditions. To show the practical utility of Place & Play SERS, we demonstrated two examples of its application: food safety testing and forensic analysis. Our results firmly verified the new measurement scheme of SERS and are expected to extend the potential of SERS by opening up untapped applications of sensitive, real-time, in situ multiplex chemical analysis.
Collapse
Affiliation(s)
- Yasutaka Kitahama
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
- LucasLand, Co. Ltd, Tokyo 101-0052, Japan
| | | | - Hiroki Segawa
- Third Department of Forensic Science, National Research Institute of Police Science, Chiba 277-0882, Japan
| | - Machiko Marumi
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Ting-Hui Xiao
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
- LucasLand, Co. Ltd, Tokyo 101-0052, Japan
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
- LucasLand, Co. Ltd, Tokyo 101-0052, Japan
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Kaur B, Kumar S, Kaushik BK. Novel Wearable Optical Sensors for Vital Health Monitoring Systems-A Review. BIOSENSORS 2023; 13:bios13020181. [PMID: 36831947 PMCID: PMC9954035 DOI: 10.3390/bios13020181] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 05/09/2023]
Abstract
Wearable sensors are pioneering devices to monitor health issues that allow the constant monitoring of physical and biological parameters. The immunity towards electromagnetic interference, miniaturization, detection of nano-volumes, integration with fiber, high sensitivity, low cost, usable in harsh environments and corrosion-resistant have made optical wearable sensor an emerging sensing technology in the recent year. This review presents the progress made in the development of novel wearable optical sensors for vital health monitoring systems. The details of different substrates, sensing platforms, and biofluids used for the detection of target molecules are discussed in detail. Wearable technologies could increase the quality of health monitoring systems at a nominal cost and enable continuous and early disease diagnosis. Various optical sensing principles, including surface-enhanced Raman scattering, colorimetric, fluorescence, plasmonic, photoplethysmography, and interferometric-based sensors, are discussed in detail for health monitoring applications. The performance of optical wearable sensors utilizing two-dimensional materials is also discussed. Future challenges associated with the development of optical wearable sensors for point-of-care applications and clinical diagnosis have been thoroughly discussed.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
- Correspondence: (S.K.); (B.K.K.)
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (S.K.); (B.K.K.)
| |
Collapse
|