1
|
Nashaat Alnagar A, Motawea A, Elamin KM, Abu Hashim II. Hyaluronic acid/lactoferrin-coated polydatin/PLGA nanoparticles for active targeting of CD44 receptors in lung cancer. Pharm Dev Technol 2024; 29:1016-1032. [PMID: 39392049 DOI: 10.1080/10837450.2024.2414937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Traditional chemotherapeutic drugs lack optimal efficacy and invoke severe adverse effects in cancer patients. Polydatin (PD), a phytomedicine, has gradually gained attention due to its antitumor activity. However, its low solubility and poor bioavailability are still cornerstone issues. The present study aimed to fabricate and develop hyaluronic acid/lactoferrin-double coated PD/PLGA nanoparticles via a layer-by-layer self-assembly technique for active targeting of CD44 receptors in lung cancer. Different molecular weights (M.wt.) of HA (32 and 110 kDa) were exploited to study the relationship between the HA M.wt. and the NPs targeting efficacy. The optimized formulations were fully characterized. Their cytotoxicity and cellular uptake were investigated against A549 cell line by CCK-8 kit and fluorescence imaging, respectively. Finally, HA110/Lf-coated PD/PLGA NPs (F9) were subjected to a competitive inhibition study to prove internalization through CD44 overexpressed receptors. The results verified the fabrication of F9 with a particle size of 174.87 ± 3.97 nm and a zeta potential of -24.37 ± 1.19 mV as well as spherical NPs architecture. Importantly, it provoked enhanced cytotoxicity (IC50 = 0.57 ± 0.02 µg/mL) and superior cellular uptake efficacy. To conclude, the current investigation lays the foundation for the prospective therapeutic avenue of F9 for active targeting of CD44 receptors in lung cancer.
Collapse
Affiliation(s)
- Ahmed Nashaat Alnagar
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
2
|
Attri N, Das S, Banerjee J, Shamsuddin SH, Dash SK, Pramanik A. Liposomes to Cubosomes: The Evolution of Lipidic Nanocarriers and Their Cutting-Edge Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:2677-2694. [PMID: 38613498 PMCID: PMC11110070 DOI: 10.1021/acsabm.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Lipidic nanoparticles have undergone extensive research toward the exploration of their diverse therapeutic applications. Although several liposomal formulations are in the clinic (e.g., DOXIL) for cancer therapy, there are many challenges associated with traditional liposomes. To address these issues, modifications in liposomal structure and further functionalization are desirable, leading to the emergence of solid lipid nanoparticles and the more recent liquid lipid nanoparticles. In this context, "cubosomes", third-generation lipidic nanocarriers, have attracted significant attention due to their numerous advantages, including their porous structure, structural adaptability, high encapsulation efficiency resulting from their extensive internal surface area, enhanced stability, and biocompatibility. Cubosomes offer the potential for both enhanced cellular uptake and controlled release of encapsulated payloads. Beyond cancer therapy, cubosomes have demonstrated effectiveness in wound healing, antibacterial treatments, and various dermatological applications. In this review, the authors provide an overview of the evolution of lipidic nanocarriers, spanning from conventional liposomes to solid lipid nanoparticles, with a special emphasis on the development and application of cubosomes. Additionally, it delves into recent applications and preclinical trials associated with cubosome formulations, which could be of significant interest to readers from backgrounds in nanomedicine and clinicians.
Collapse
Affiliation(s)
- Nishtha Attri
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Swarnali Das
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Shazana H. Shamsuddin
- Department
of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Sandeep Kumar Dash
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
3
|
Zahiri M, Kamali H, Abnous K, Mohammad Taghdisi S, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Synthesis of folate targeted theranostic cubosomal platform for co-delivery of bismuth oxide and doxorubicin to melanoma in vitro and in vivo. Eur J Pharm Biopharm 2024; 198:114259. [PMID: 38479563 DOI: 10.1016/j.ejpb.2024.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Liquid crystalline nanoparticles (LCNPs) have gained much attention in cancer nanomedicines due to their unique features such as high surface area, storage stability, and sustained-release profile. In the current study, a novel LCNP for co-encapsulation of Bi2O3 and hydrophilic doxorubicin (DOX) was fabricated and functionalized with folic acid (FA) to achieve efficient tumor targeting toward CT-scan imaging and chemotherapy of melanoma in vitro and in vivo. LCNPs Bi2O3 NPs were prepared using glycerol monooleate-pluronic F-127 (GMO/PF127/water). Firstly, GMO/water were homogenized to prepare LC gel. Then, the stabilizer aqueous solution (PF127/Bi2O3/DOX) was added to the prepared LC gel and homogenized using homogenization and ultrasonication. The formulated NPs exhibited superior stability with encapsulation efficiency. High cytotoxicity and cellular internalization of the FA-Bi2O3-DOX-NPs were observed in comparison with Bi2O3-DOX-NPs and the free DOX in folate-receptor (FR) overexpressing cells (B16F10) in vitro. Moreover, ideal tumor suppression with increased survival rate were observed in tumorized mice treated with FA-Bi2O3-DOX-NPs compared to those treated with non-targeted one. On the other hand, the CT-imaging ability of the Bi2O3-DOX-NPs was tested inB16F10 tumor-bearing mice. The obtained data indicated a high potential of the developed targeted theranostic FA-Bi2O3-DOX-NPs for diagnostics and treatment of melanoma.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Rajput H, Nangare S, Khan Z, Patil A, Bari S, Patil P. Design of lactoferrin functionalized carboxymethyl dextran coated egg albumin nanoconjugate for targeted delivery of capsaicin: Spectroscopic and cytotoxicity studies. Int J Biol Macromol 2024; 256:128392. [PMID: 38029917 DOI: 10.1016/j.ijbiomac.2023.128392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The increased mortality rates associated with colorectal cancer highlight the pressing need for improving treatment approaches. While capsaicin (CAP) has shown promising anticancer activity, its efficacy is hampered due to low solubility, rapid metabolism, suboptimal bioavailability, and a short half-life. Therefore, this study aimed to prepare a lactoferrin-functionalized carboxymethyl dextran-coated egg albumin nanoconjugate (LF-CMD@CAP-EGA-NCs) for the targeted CAP delivery to enhance its potential for colorectal cancer therapy. Briefly, LF-CMD was synthesized through an esterification reaction involving LF as a receptor and CMD as a shell. Concurrently, CAP was incorporated into an EGA carrier using gelation and hydrophobic interactions. The subsequent production of LF-CMD@CAP-EGA-NCs was achieved through the Maillard reaction. Spectral characterizations confirmed the successful synthesis of smooth and spherical-shaped LF-CMD@CAP-EGA-NCs using LF-CMD and EGA-CAP nanoparticles, with high entrapment efficiency and satisfactory drug content. Furthermore, LF-CMD@CAP-EGA-NCs demonstrated a sustained release of CAP (76.52 ± 1.01 % in 24 h, R2 = 0.9966) in pH 5.8 buffer with anomalous transport (n = 0.68) owing to the shell of the CMD and EGA matrix. The nanoconjugate exhibited enhanced cytotoxicity in HCT116 and LoVo cell lines, which is attributed to the overexpression of LF receptors in colorectal HCT116 cells. Additionally, LF-CMD@CAP-EGA-NCs demonstrated excellent biocompatibility, as observed in the FHC-CRL-1831 cell line. In conclusion, LF-CMD@CAP-EGA-NCs can be considered as a promising approach for targeted delivery of CAP and other anticancer agents in colorectal cancer treatment.
Collapse
Affiliation(s)
- Hrishikesh Rajput
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India; Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Zamir Khan
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Ashwini Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Sanjaykumar Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India; Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India.
| |
Collapse
|
5
|
Araújo-Silva H, Teixeira PV, Gomes AC, Lúcio M, Lopes CM. Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems. Biochim Biophys Acta Rev Cancer 2023; 1878:189011. [PMID: 37923232 DOI: 10.1016/j.bbcan.2023.189011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.
Collapse
Affiliation(s)
- Henrique Araújo-Silva
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia V Teixeira
- Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Dong M, Liu Y, Liu B, Peng J, Tang Y, Lu G, Shi H, Zhu F. Enhanced anti-glioma efficacy of biodegradable periodic mesoporous organosilica nanoparticles through target delivery of chemotherapeutics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:48. [PMID: 37792144 PMCID: PMC10550876 DOI: 10.1007/s10856-023-06747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Glioma is the most common malignant tumor of the brain and enhancing the efficacy of chemotherapy in glioma is critical for improving patients' prognosis. In this study, a glioma-targeting drug delivery system is constructed using biodegradable periodic mesoporous organosilica nanoparticles (PMO) that are modified with lactoferrin (Lf) ligands. The obtained PMO is doped with thioether groups and can be degraded in the high concentration of glutathione in tumor cells. The surface area and pore volume of PMO are 772 cm2/g and 0.98 cm3/g, respectively and the loading capacity of doxorubicin (Dox) is as high as 20%. The results of the confocal laser scanning microscope show that the uptake of PMO-Lf@Dox by C6 cells is higher than PMO@Dox. The quantitative analysis of the flow cytometer further demonstrates that more PMO-Lf@Dox enter C6 cells, indicating that the modification of lactoferrin can significantly increase the uptake of C6 cells. Finally, the therapeutic efficacy results show that Lf-modified PMO enhances the inhibitory effect of Dox on C6 cells when incubated for 24 h and 72 h. In summary, this lactoferrin receptor-mediated PMO drug carrier with biodegradability in glutathione in tumor cells can be used to enhance drug delivery into glioma without long-term accumulation in vivo. In this study, a glioma-targeting drug delivery system is constructed using periodic mesoporous organosilica nanoparticles (PMO) that modified with lactoferrin (Lf) ligands. This lactoferrin receptor-mediated PMO drug carrier can be used to enhance drug delivery into brain glioma.
Collapse
Affiliation(s)
- Min Dong
- Department of Comparative Medicine, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Ying Liu
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325025, PR China
| | - Biao Liu
- Department of Comparative Medicine, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Jin Peng
- Intervention Department, Chenggong Hospital Affiliated to Xiamen University, 94-96 Wenyuan Road, Xiamen, 361003, PR China
| | - Yuxia Tang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, PR China.
| | - Haibin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China.
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China.
| |
Collapse
|
8
|
Bono A, La Monica G, Alamia F, Mingoia F, Gentile C, Peri D, Lauria A, Martorana A. In Silico Mixed Ligand/Structure-Based Design of New CDK-1/PARP-1 Dual Inhibitors as Anti-Breast Cancer Agents. Int J Mol Sci 2023; 24:13769. [PMID: 37762072 PMCID: PMC10531453 DOI: 10.3390/ijms241813769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting in advantageous monotherapy. To this aim, in the present work, we identified compound 645656 with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target mechanism of action was investigated through the correlation between the antiproliferative activity data and the target proteins' (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics Simulation confirmed the high stability of the most effective selected compound 645656 in complex with both PARP-1 and CDK-1.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy;
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Daniele Peri
- Dipartimento di Ingegneria dell’Innovazione Industriale e Digitale, Università degli Studi di Palermo, Viale 10 delle Scienze Ed. 6, 90128 Palermo, Italy;
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| |
Collapse
|
9
|
Tran TH, Tran PTT, Truong DH. Lactoferrin and Nanotechnology: The Potential for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15051362. [PMID: 37242604 DOI: 10.3390/pharmaceutics15051362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Lactoferrin (Lf)-a glycoprotein of the transferrin family-has been investigated as a promising molecule with diverse applications, including infection inhibition, anti-inflammation, antioxidant properties and immune modulation. Along with that, Lf was found to inhibit the growth of cancerous tumors. Owing to unique properties such as iron-binding and positive charge, Lf could interrupt the cancer cell membrane or influence the apoptosis pathway. In addition, being a common mammalian excretion, Lf offers is promising in terms of targeting delivery or the diagnosis of cancer. Recently, nanotechnology significantly enhanced the therapeutic index of natural glycoproteins such as Lf. Therefore, in the context of this review, the understanding of Lf is summarized and followed by different strategies of nano-preparation, including inorganic nanoparticles, lipid-based nanoparticles and polymer-based nanoparticles in cancer management. At the end of the study, the potential future applications are discussed to pave the way for translating Lf into actual usage.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | | |
Collapse
|
10
|
Development of novel cyanopyridines as PIM-1 kinase inhibitors with potent anti-prostate cancer activity: Synthesis, biological evaluation, nanoparticles formulation and molecular dynamics simulation. Bioorg Chem 2022; 129:106122. [PMID: 36084418 DOI: 10.1016/j.bioorg.2022.106122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Recently, inhibition of PIM-1 enzyme is found as an effective route in the fight against proliferation of cancer. Herein, new cyano pyridines that target PIM-1 kinase were designed, synthesized, and biologically evaluated. Two prostate cell lines were used to examine each of the new compounds in vitro for anticancer activity, namely, PC-3 and DU-145. The cyanopyridine derivatives 2b, 3b, 4b, and 5b with an N,N-dimethyl phenyl group at the pyridine ring's 4-position showed considerable antitumor effect on the tested cell lines. Additionally, the high selectivity index revealed that these compounds were less cytotoxic to normal WI-38 cells. Furthermore, they exhibited strong inhibitory effect on PIM-1 having IC50 = 0.248, 0.13, 0.326 and 0.245 μM, respectively. The most powerful derivatives2b, 3b, 4b, and 5b, were chosen for further examination of their inhibitory potential on both kinases (PIM-2 and PIM-3). Interestingly, upon loading compound 3b in a cubosomes formulation with nanometric size, improvements in cytotoxicity and inhibitory effect on PIM-1 kinase were observed. In silico ADME parameters study revealed that compound 3b is orally bioavailable without penetration to the blood-brain barrier. Further, the docking simulations revealed the ability of our potent compounds to well accommodate the PIM-1 kinase active site forming stable complexes. In a 150 ns MD simulation, the most powerful PIM-1 inhibitor 3b produced stable complex with the PIM-1 enzyme (RMSD = 1.76). Furthermore, the 3b-PIM-1 complex has the low binding free energy (-242.2 kJ/mol) according to the MM-PBSA calculations.
Collapse
|
11
|
Li Y, Dong L, Mu Z, Liu L, Yang J, Wu Z, Pan D, Liu L. Research Advances of Lactoferrin in Electrostatic Spinning, Nano Self-Assembly, and Immune and Gut Microbiota Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10075-10089. [PMID: 35968926 DOI: 10.1021/acs.jafc.2c04241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactoferrin (LF) is a naturally present iron-binding globulin with the structural properties of an N-lobe strongly positively charged terminus and a cage-like structure of nano self-assembly encapsulation. These unique structural properties give it potential for development in the fields of electrostatic spinning, targeted delivery systems, and the gut-brain axis. This review will provide an overview of LF's unique structure, encapsulation, and targeted transport capabilities, as well as its applications in immunity and gut microbiota regulation. First, the microstructure of LF is summarized and compared with its homologous ferritin, revealing both structural and functional similarities and differences between them. Second, the electrostatic interactions of LF and its application in electrostatic spinning are summarized. Its positive charge properties can be applied to functional environmental protection packaging materials and to improving drug stability and antiviral effects, while electrostatic spinning can promote bone regeneration and anti-inflammatory effects. Then the nano self-assembly behavior of LF is exploited as a cage-like protein to encapsulate bioactive substances to construct functional targeted delivery systems for applications such as contrast agents, antibacterial dressings, anti-cancer therapy, and gene delivery. In addition, some covalent and noncovalent interactions of LF in the Maillard reaction and protein interactions and other topics are briefly discussed. Finally, LF may affect immunological function via controlling the gut microbiota. In conclusion, this paper reviews the research advances of LF in electrostatic spinning, nano self-assembly, and immune and gut microbiota regulation, aiming to provide a reference for its application in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhishen Mu
- Inner Mongolia Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
12
|
Singh P, Alka, Maurya P, Nisha R, Singh N, Parashar P, Mishra N, Pal RR, Saraf SA. QbD Assisted Development of Lipidic Nanocapsules for Antiestrogenic Activity of Exemestane in Breast Cancer. J Liposome Res 2022:1-16. [PMID: 35930249 DOI: 10.1080/08982104.2022.2108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Some breast cancers are caused by hormonal imbalances, such as estrogen and progesterone.These hormones play a function in directing the growth of cancer cells. The hormone receptors in hormone receptor-positive breast cancer lead breast cells to proliferate out of control. Cancer therapy such as hormonal, targeted, radiation is still unsatisfactory because of these challenges viz. MDR (Multiple drug resistance), off-targeting, severe adverse effects. A novel aromatase inhibitor exemestane (Exe) exhibits promising therapy in breast cancer. This study aims to develop and optimize Exe-loaded lipid nanocapsules (LNCs) by using DSPC, PF68 and olive oil as lipid, surfactant and oil phase, respectively and to characterize the same. The prepared nanocapsules were investigated via in-vitro cell culture and in-vivo animal models. The LNCs exhibited cytotoxicity in MCF-7 cell lines and enhanced anti-cancer activity and reduced cardiotoxicity in DMBA-induced animal model when compared to the drug. Additionally, in-vivo pharmacokinetics revealed a 4.2-fold increased oral bioavailability when compared with Exe suspension. This study demonstrated that oral administration of Exe-loaded LNCs holds promise for the antiestrogenic activity of exemestane in breast cancer.
Collapse
Affiliation(s)
- Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Poonam Parashar
- Amity institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
13
|
Development of Irinotecan Liposome Armed with Dual-Target Anti-Epidermal Growth Factor Receptor and Anti-Fibroblast Activation Protein-Specific Antibody for Pancreatic Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14061202. [PMID: 35745775 PMCID: PMC9227843 DOI: 10.3390/pharmaceutics14061202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of death in Taiwan. Previous studies have shown that more than 90% of pancreatic cancer cells presented epidermal growth factor receptor (EGFR) cell marker, and this marker is thought to be important as it is related to activation of cancer cell proliferation, angiogenesis, and cancer progression. Moreover, tumor-associated fibroblasts were involved in tumor proliferation and progression. In this study, we fabricated an anti-EGFR and anti-fibroblast activation protein bispecific antibody-targeted liposomal irinotecan (BS−LipoIRI), which could specifically bind to pancreatic cancer cells and tumor-associated fibroblasts. The drug encapsulation efficiency of BS−LipoIRI was 80.95%, and the drug loading was 8.41%. We proved that both pancreatic cancer cells and fibroblasts could be targeted by BS−LipoIRI, which showed better cellular uptake efficacy compared to LipoIRI. Furthermore, an in vivo mouse tumor test indicated that BS−LipoIRI could inhibit pancreatic cancer growth up to 46.2% compared to phosphate-buffered saline control, suggesting that BS−LipoIRI could be useful in clinical cancer treatment.
Collapse
|
14
|
Green Self-assembled Lactoferrin Carboxymethyl Cellulose Nanogels for Synergistic Chemo/herbal Breast Cancer Therapy. Colloids Surf B Biointerfaces 2022; 217:112657. [DOI: 10.1016/j.colsurfb.2022.112657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
|