1
|
Kuntamung K, Sangthong P, Jakmunee J, Ounnunkad K. Simultaneous immunodetection of multiple cervical cancer biomarkers based on a signal-amplifying redox probes/polyethyleneimine-coated gold nanoparticles/2D tungsten disulfide/graphene oxide nanocomposite platform. Bioelectrochemistry 2024; 160:108780. [PMID: 39018611 DOI: 10.1016/j.bioelechem.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
To advance cervical cancer diagnostics, we propose a state-of-the-art label-free electrochemical immunosensor designed for the simultaneous detection of multiple biomarker proteins (p16INK4a, p53, and Ki67). This immunosensor is constructed using a polyethyleneimine-coated gold nanoparticles/2D tungsten disulfide/graphene oxide (PEI-AuNPs/2D WS2/GO) composite-modified three-screen-printed carbon electrode (3SPCE) array. The 2D WS2/GO hybrid provides a large specific surface area for supporting well-dispersed PEI-AuNPs and adsorbed redox-active species, enhancing overall performance. The PEI-AuNPs-decorated 2D WS2/GO composite not only improves electrode conductivity but also increases the antibody loading capacity. Redox-active species, including Cd2+ ions, 2,3-diaminophenazine (DAP), and methylene blue (MB), serve as distinct signaling compounds to quantitatively detect the cervical cancer biomarkers p16INK4a, p53, and Ki67, respectively. Additionally, the immunosensor demonstrates the detection with high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. This immunosensor demonstrates a good linear relationship with the logarithm of protein concentrations. Additionally, the immunosensor also demonstrates high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. Our promising results and the successful application of the immunosensor in detecting three tumor markers in human serum highlight its potential for clinical diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Kulrisa Kuntamung
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Occupational and Environmental Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Wei Y, Li W, Han Y, Xiong Y, Kuang Y, Zhang J. CdTe based water-soluble fluorescent probe for rapid detection of zilpaterol in swine urine and pork. Food Chem 2024; 445:138668. [PMID: 38367555 DOI: 10.1016/j.foodchem.2024.138668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Zilpaterol hydrochloride (zilpaterol) is used in animal feed as it can increase the lean meat mass. However, consuming zilpaterol-containing animal products may damage human health. Therefore, rapid detection of zilpaterol is attracting increasing research attention. This study aimed to developed a fast, accurate, and ultrasensitive fluorescence immunoassay based on CdTe quantum dots (QDs). A CdTe QD fluorescence sensor was synthesized from thioglycolic acid using a simple hydrothermal method. The morphology and structure of the CdTe QDs were characterized using transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The detection limits of our method in swine urine and pork samples were 0.5 μg/L and 1.2 μg/kg, respectively. A wide linear range of 0.1-10000 μg/L (R2 = 0.996) was achieved. Both within-run precision (CVw) and between-run precision (CVb) were ≤ 10 %. The method was then successfully applied for the analysis of zilpaterol contents in swine urine and pork samples.
Collapse
Affiliation(s)
- Yihua Wei
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Weihong Li
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yan Han
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yan Xiong
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yuanying Kuang
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Jinyan Zhang
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China.
| |
Collapse
|
3
|
Turk Z, Armani A, Jafari-Gharabaghlou D, Madakbas S, Bonabi E, Zarghami N. A new insight into the early detection of HER2 protein in breast cancer patients with a focus on electrochemical biosensors approaches: A review. Int J Biol Macromol 2024; 272:132710. [PMID: 38825266 DOI: 10.1016/j.ijbiomac.2024.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.
Collapse
Affiliation(s)
- Zeynep Turk
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Aydin University, Istanbul, Türkiye
| | - Arta Armani
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyfullah Madakbas
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.
| |
Collapse
|
4
|
Xu Y, Zhang Y, Li N, Yang S, Chen J, Hou J, Hou C, Huo D. An ultrasensitive ratiometric electrochemical aptasensor based on metal-organic frameworks and nanoflower-like Bi 2CuO 4 for human epidermal growth factor receptor 2 detection. Bioelectrochemistry 2023; 154:108542. [PMID: 37591183 DOI: 10.1016/j.bioelechem.2023.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
An ultra-sensitive ratiometric electrochemical aptasensor was constructed based on metal-organic frameworks (MOFs) and bimetallic oxides for the detection of the human epidermal growth factor receptor 2 (HER2), a breast cancer marker. The aluminum metal-organic framework (Al-MOF) and cerium-metal-organic framework (Ce-MOF) have higher specific surface area, which is conducive to load more aptamers or complementary DNA (cDNA), and realize the amplification of internal reference signal Fc. Furthermore, nanoflower-like bismuth copper oxide (Bi2CuO4) with abundant active sites was introduced to modify more aptamers on its surface, which were then fixed to the glassy carbon electrode (GCE) to amplify the detection signal. The quantitative detection of HER2 was achieved by differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The materials were characterized by scanning electron microscope, transmission electron microscope, Zeta potential analyzer, X-ray diffraction and X-ray photoelectron spectroscopy. The ratiometric electrochemical aptasensor based on nanomaterial and chain displacement signal amplification technology could discern HER2 in a very wide range (0.001-20.0 ng/mL) with an extremely low detection limit (0.049 pg/mL) and has demonstrated good performance in clinical serum analysis. This strategy also provides a feasible idea for sensitive analysis of other clinical tumor markers.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ning Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing 404000, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
5
|
Chen X, Sun Y, Wang W, Chen Z, Ming Z. Selective determination of cuprous ion in copper dissolving solution based on bathocuproine-modified expanded graphite electrode. ANAL SCI 2023; 39:1465-1473. [PMID: 37280484 DOI: 10.1007/s44211-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023]
Abstract
The presence of cuprous ions in the copper-dissolving solution significantly affects the microstructure of copper plated surface. Fewer quantitative analyses of cuprous ions in the copper foil productive process had rarely been involved so far. In the present work, a novel electrochemical sensor of the bathocuproine (BCP) modified expanded graphite (EG) electrode was developed for the selective determination of cuprous ions. EG has a large surface area, good adsorption, and excellent electrochemical performance which remarkably promoted analytical sensitivity. Meanwhile, the selective determination of the BCP-EG electrode for cuprous ions in the coexistence of ten thousand times of copper ions have been achieved on the benefit of the special coordination of BCP to cuprous ions. In the coexistence of 50 g/L copper ions, the analytical performance of the BCP-EG electrode for the determination of cuprous ions had been examined. The results represented a wide detection range of cuprous ions in the range of 1.0 μg/L-5.0 mg/L, with a low detection limit of 0.18 μg/L (S/N = 3) and the BCP-EG electrode has great selectivity to cuprous ions in presence of various interferences. The analytical selectively for cuprous ions supported by the proposed electrode would be a potential analytical tool for quality improvement in electrolytic copper foil manufacturing.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, 213032, People's Republic of China
| | - Yufa Sun
- School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Wenchang Wang
- School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zhidong Chen
- School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Zhiyao Ming
- Jiangsu Mingfeng Electronic Material Technology Co., Ltd., Changzhou, 213341, People's Republic of China
| |
Collapse
|
6
|
Centane S, Mgidlana S, Openda Y, Nyokong T. Single vs sandwich aptamers: Towards the detection of human epidermal growth factor receptor 2 using composites of phthalocyanine and nanoparticles. Bioelectrochemistry 2023; 153:108496. [PMID: 37392577 DOI: 10.1016/j.bioelechem.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The superiority of the sandwich over a single aptamer based aptasensor assay for the detection of the human epidermal growth factor receptor 2 (HER2) is demonstrated for the first time. Cobalt tris-3,5 dimethoxy-phenoxy pyridine (5) oxy (2)- carboxylic acid phthalocyanine (CoMPhPyCPc) and sulphur/nitrogen doped graphene quantum dots (SNGQDs) and cerium oxide nanoparticles (CeO2NPs) nanocomposite (SNGQDs@CeO2NPs) were used for electrode modification of glassy carbon electrode (GCE) both individually and combined to form the substrates: GCE/SNGQDs@CeO2NPs, GCE/CoMPhPyCPc and GCE/SNGQDs@CeO2NPs/CoMPhPyCPc. The designed substrates were used as immobilization platforms for the amino functionalized HB5 aptamer for the development of both single and sandwich aptasensor assays. A novel bioconjugate, made of the HB5 aptamer and nanocomposite (HB5-SNGQDs@CeO2NPs) was fabricated, and characterized using ultra-violet/visible, Fourier transform infrared, and Raman spectroscopies as well as scanning electron microscopy. HB5-SNGQDs@CeO2NPs was applied as a secondary aptamer in the design of novel sandwich assays towards the electrochemical detection of HER2. The performance of the designed aptasensors were evaluated using electrochemical impedance spectroscopy. The sandwich assay gave low limit of detection of 0.00088 pg/mL, high sensitivity of 773925 Ω pg-1mL, showed stability, and good precision in real samples towards HER2 detection.
Collapse
Affiliation(s)
- Sixolile Centane
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Sithi Mgidlana
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Yolande Openda
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
7
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|