1
|
Wang Q, Feng B, Rong Y, Pan D, Ye M, Xin Z, Chen Y. Copper Nanoclusters Imparted Metalloporphyrin Based Metal-Organic Frameworks for Enhanced CO 2 Electroreduction. Chemistry 2024:e202403231. [PMID: 39480117 DOI: 10.1002/chem.202403231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Strategies that can introduce catalytic auxiliary into electrocatalysts to boost the performance of electrocatalytic CO2 reduction reaction (CO2RR) are meaningful in exploring hybrid electrocatalytic systems. Here, a series of hybrid electrocatalysts (Cu NCs@MOF-545-M, M=Fe, Co and Ni) have been prepared by assembly Cu NCs with MOF-545-M (M=Fe, Co and Ni) and successfully applied in electrocatalytic CO2RR. In the obtained MOF-545-M (M=Fe, Co and Ni), the integration of Cu NCs with MOF-545-M (M=Fe, Co and Ni) can create a hybrid electrocatalytic system that enhances the charge transfer efficiency and electrocatalytic CO2RR activity. Specifically, the optimal Cu NCs@MOF-545-Co presents remarkable FECO over a wide potential range (-0.7 V to -1.0 V), high CO generation rate (8.2 mol m-2 h-1) and excellent maximum energy efficiency (69 %, -0.7 V), which is superior to Cu NCs and MOF-545-Co, and represented to be one of the best performances to date. This work demonstrates a facile approach to significantly improve the FECO by loading metal nanoclusters into MOFs, providing a valuable reference for future studies on hybridization strategies to enhance the performance of electrocatalysts.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Bangli Feng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Yan Rong
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Danxuan Pan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Mingfu Ye
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Zhifeng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Kim J, Ling J, Lai Y, Milner PJ. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS MATERIALS AU 2024; 4:258-273. [PMID: 38737116 PMCID: PMC11083122 DOI: 10.1021/acsmaterialsau.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 05/14/2024]
Abstract
Electroactive materials are central to myriad applications, including energy storage, sensing, and catalysis. Compared to traditional inorganic electrode materials, redox-active organic materials such as porous organic polymers (POPs) and covalent organic frameworks (COFs) are emerging as promising alternatives due to their structural tunability, flexibility, sustainability, and compatibility with a range of electrolytes. Herein, we discuss the challenges and opportunities available for the use of redox-active organic materials in organoelectrochemistry, an emerging area in fine chemical synthesis. In particular, we highlight the utility of organic electrode materials in photoredox catalysis, electrochemical energy storage, and electrocatalysis and point to new directions needed to unlock their potential utility for organic synthesis. This Perspective aims to bring together the organic, electrochemistry, and polymer communities to design new heterogeneous electrocatalysts for the sustainable synthesis of complex molecules.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jianheng Ling
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yihuan Lai
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Endo K, Raza A, Yao L, Van Gele S, Rodríguez-Camargo A, Vignolo-González HA, Grunenberg L, Lotsch BV. Downsizing Porphyrin Covalent Organic Framework Particles Using Protected Precursors for Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313197. [PMID: 38300155 DOI: 10.1002/adma.202313197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Indexed: 02/02/2024]
Abstract
Covalent organic frameworks (COFs) are promising electrocatalyst platforms owing to their designability, porosity, and stability. Recently, COFs with various chemical structures are developed as efficient electrochemical CO2 reduction catalysts. However, controlling the morphology of COF catalysts remains a challenge, which can limit their electrocatalytic performance. Especially, while porphyrin COFs show promising catalytic properties, their particle size is mostly large and uncontrolled because of the severe aggregation of crystallites. In this work, a new synthetic methodology for rationally downsized COF catalyst particles is reported, where a tritylated amine is employed as a novel protected precursor for COF synthesis. Trityl protection provides high solubility to a porphyrin precursor, while its deprotection proceeds in situ under typical COF synthesis conditions. Subsequent homogeneous nucleation and colloidal growth yield smaller COF particles than a conventional synthesis, owing to suppressed crystallite aggregation. The downsized COF particles exhibit superior catalytic performance in electrochemical CO2 reduction, with higher CO production rate and faradaic efficiency compared to conventional COF particles. The improved performance is attributed to the higher contact area with a conductive agent. This study reveals particle size as an important factor for the evaluation of COF electrocatalysts and provides a strategy to control it.
Collapse
Affiliation(s)
- Kenichi Endo
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Asif Raza
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Liang Yao
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Samuel Van Gele
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
| | - Andrés Rodríguez-Camargo
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Hugo A Vignolo-González
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
- Cluster of Excellence e-conversion, 85748, Garching, Germany
| | - Lars Grunenberg
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
| | - Bettina V Lotsch
- Nanochemistry Department, Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), 81377, Munich, Germany
- Cluster of Excellence e-conversion, 85748, Garching, Germany
| |
Collapse
|