1
|
Manna F, Oggianu M, Auban-Senzier P, Novitchi G, Canadell E, Mercuri ML, Avarvari N. A highly conducting tetrathiafulvalene-tetracarboxylate based dysprosium(iii) 2D metal-organic framework with single molecule magnet behaviour. Chem Sci 2024; 15:19247-19263. [PMID: 39574533 PMCID: PMC11576575 DOI: 10.1039/d4sc05763e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
The synthesis and whole characterization by a multitechnique approach of an unprecedented dysprosium(iii) 2D metal organic framework (MOF), involving the redox-active tetrathiafulvalene (TTF)-based linker TTF-tetracarboxylate (TTF-TC), are herein reported. The single-crystal X-ray structure, formulated as [Dy6(TTF-TC)5(H2O)22]·21H2O (1), reveals a complex 2D topology, with hexanuclear Dy6 clusters as secondary building units (SBUs) interconnected by five linkers, stacked almost parallel in each layer and eclipsed along the [111] direction, leading to the formation of 1D channels filled by water molecules. The mixed valence of the TTF units is confirmed by both bond distance analysis, Raman microscopy and diffuse reflectance spectroscopy, and further supported by band structure calculations, which also predict activated conductivity for this material. Thanks to efficient TTF stacking and partial oxidation, 1 shows semiconducting behavior, with, however, a record conductivity value of 1 mS cm-1 at room temperature, when compared to the previously reported TTF-based MOFs. Furthermore, temperature and magnetic field dependent ac (alternative current) magnetic susceptibility measurements demonstrate field induced slow relaxation of magnetization, accounting for two independent relaxation processes, with an energy barrier (U eff/K) of around 12 K, typical for dysprosium carboxylate complexes. The herein reported 2D Dy-MOF provides a valuable master plan for coexistence of conducting π-TTF stacks and highly anisotropic DyIII SMM properties.
Collapse
Affiliation(s)
- Fabio Manna
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari Monserrato I-09042 Italy
- University of Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX Angers F-49000 France
- INSTM Via Giuseppe Giusti, 9 Firenze 50121 Italy
| | - Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari Monserrato I-09042 Italy
- INSTM Via Giuseppe Giusti, 9 Firenze 50121 Italy
| | - Pascale Auban-Senzier
- Université Paris-Saclay, CNRS, UMR 8502, Laboratoire de Physique des Solides Orsay 91405 France
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes B.P. 166 Grenoble Cedex 9 38042 France
| | - Enric Canadell
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB Bellaterra 08193 Spain
- Royal Academy of Sciences and Arts of Barcelona, Chemistry Section La Rambla 115 Barcelona 08002 Spain
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari Monserrato I-09042 Italy
- INSTM Via Giuseppe Giusti, 9 Firenze 50121 Italy
| | - Narcis Avarvari
- University of Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX Angers F-49000 France
| |
Collapse
|
2
|
Zhang X, Zhang Y, Li X, Yu J, Chi W, Wang Z, Zheng H, Sun Z, Zhu Y, Jiao C. A stable Mn(II) coordination polymer demonstrating proton conductivity and quantitative sensing of oxytetracycline in aquaculture. Dalton Trans 2024; 53:5034-5042. [PMID: 38374728 DOI: 10.1039/d3dt03882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The construction and investigation of dual-functional coordination polymers (CPs) with proton conduction and luminescence sensing is of great significance in clean energy and agricultural monitoring fields. In this work, an Mn-based coordination polymer (Mn-CP), namely, [Mn0.5(HL)] (H2L = HOOCC6H4C6H4CH2PO(OH)OCH3), was hydrothermally synthesized. Mn-CP has a one-dimensional (1D) chain structure, in which uncoordinated -COOH groups can serve as potential sites for fluorescence sensing. Moreover, Mn-CP shows good water and pH stabilities, offering the feasibility for proton conduction and sensing applications. Mn-CP displays comparatively high proton conductivity of 1.07 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), which is promising for proton conduction materials. Moreover, it can serve as a repeatable, highly selective, and visualized fluorescence sensor for detecting oxytetracycline (OTC). More importantly, Mn-CP reveals an amazing quantitative sensing of OTC in actual samples such as seawater, aquaculture freshwater, soil infiltration solutions, and tap water. This work proves the excellent application potential of dual-functional CPs in the field of clean energy and environmental protection, especially for the fluorescence detection of antibiotics in aquaculture systems.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yana Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Xin Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jiahui Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Weijia Chi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zikang Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Hanwen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zhengang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yanyu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Song YJ, Sang YL, Xu KY, Hu HL, Zhu QQ, Li G. Ligand-Functionalized MIL-68-type Indium(III) Metal-Organic Frameworks with Prominent Intrinsic Proton Conductivity. Inorg Chem 2024; 63:4233-4248. [PMID: 38377313 DOI: 10.1021/acs.inorgchem.3c04370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Indium-based metal-organic frameworks (In-MOFs) have now become an attractive class of porous solids in materials science and electrochemistry due to their diverse structures and promising applications. In the field of proton conduction, to find more crystalline MOFs with splendid proton-conductive properties, herein, five three-dimensional isostructural In-MOFs, MIL-68-In or MIL-68-In-X (X = NH2, OH, Br, or NO2) using terephthalic acid (H2BDC) or functionalized terephthalic acids (H2BDC-X) as multifunctional linkages were efficiently fabricated. First, the outstanding structural stability of the five MOFs, including thermal and water stability, was verified by thermal analysis and powder X-ray diffraction. Subsequently, the H2O-mediated proton conductivities (σ) were fully assessed and compared. Notably, their σ evinced a significant positive correlation between the temperature or relative humidity (RH) and varied with the functional groups on the organic ligands. Impressively, their highest σ values are up to 10-3-10-4 S/cm (100 °C/98% RH) and change in this order: MIL-68-In-OH (1.72 × 10-3 S/cm) > MIL-68-In-NH2 (1.70 × 10-3 S/cm) > MIL-68-In-NO2 (4.47 × 10-4 S/cm) > MIL-68-In-Br (4.11 × 10-4 S/cm) > MIL-68-In (2.37 × 10-4 S/cm). Finally, the computed activation energy values under 98 or 68% RHs are assessed, and the related proton conduction mechanisms are speculated. Moreover, after electrochemical testing, these MOFs illustrate remarkable structural rigidity, laying a meritorious material foundation for future applications.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Ya-Li Sang
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, P. R. China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng 024000, P. R. China
| | - Kai-Yin Xu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Qian-Qian Zhu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
4
|
Zhou YN, Wang L, Yu JH, Ding TY, Zhang X, Jiao CQ, Li X, Sun ZG, Zhu YY. Two Stable Cd-MOFs as Dual-Functional Materials with Luminescent Sensing of Antibiotics and Proton Conduction. Inorg Chem 2022; 61:20111-20122. [PMID: 36424127 DOI: 10.1021/acs.inorgchem.2c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Construction and investigation of dual-functional metal-organic frameworks (MOFs) with luminescent sensing and proton conduction provide widespread applications in clean energy and environmental monitoring fields. By selecting a phosphonic acid ligand 4-pyridyl-CH2N(CH2PO3H2)2 (H4L) and coligand 2,2'-biimidazole (H2biim), two cadmium-based MOFs [Cd1.5(HL)(H2biim)0.5] (1) and (H4biim)0.5·[Cd2(L)(H2biim)Cl] (2) with different structures and properties have been hydrothermally synthesized by controlling reaction temperature. Based on the excellent thermal and chemical stabilities, and good luminescent stabilities in water solution, 1 and 2 can serve as luminescent sensors of chloramphenicol (CAP) with different quenching constant (KSV) values and detection limits (LODs) in water, simulated environmental system, and real fish water system. Meanwhile, different sensing effects and possible sensing mechanisms are analyzed in detail. Moreover, 1 and 2 can also serve as good proton-conducting materials. The proton conductivities can reach up to 1.41 × 10-4 S cm-1 for 1 and 1.02 × 10-3 S cm-1 for 2 at 368 K and 95% relative humidity (RH). Among them, 2 shows better luminescent sensing and proton conduction performance than 1, which indicates that different crystal structures have a great impact on the properties of MOFs. Through the discussion of the relationship between structures and properties in detail, the possible reasons for the differences in properties are obtained, which can provide theoretical guidance for the rational design of this kind of dual-functional MOFs in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jia-Hui Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Tian-Yang Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cheng-Qi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhen-Gang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yan-Yu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|