1
|
Wang GF, Shen L. Cauchy hyper-graph Laplacian nonnegative matrix factorization for single-cell RNA-sequencing data analysis. BMC Bioinformatics 2024; 25:169. [PMID: 38684942 PMCID: PMC11059750 DOI: 10.1186/s12859-024-05797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Many important biological facts have been found as single-cell RNA sequencing (scRNA-seq) technology has advanced. With the use of this technology, it is now possible to investigate the connections among individual cells, genes, and illnesses. For the analysis of single-cell data, clustering is frequently used. Nevertheless, biological data usually contain a large amount of noise data, and traditional clustering methods are sensitive to noise. However, acquiring higher-order spatial information from the data alone is insufficient. As a result, getting trustworthy clustering findings is challenging. We propose the Cauchy hyper-graph Laplacian non-negative matrix factorization (CHLNMF) as a unique approach to address these issues. In CHLNMF, we replace the measurement based on Euclidean distance in the conventional non-negative matrix factorization (NMF), which can lessen the influence of noise, with the Cauchy loss function (CLF). The model also incorporates the hyper-graph constraint, which takes into account the high-order link among the samples. The CHLNMF model's best solution is then discovered using a half-quadratic optimization approach. Finally, using seven scRNA-seq datasets, we contrast the CHLNMF technique with the other nine top methods. The validity of our technique was established by analysis of the experimental outcomes.
Collapse
Affiliation(s)
- Gao-Fei Wang
- School of Computer Science, Qufu Normal University, Rizhao, 276826, Shandong, China.
| | - Longying Shen
- School of Computer Science, Qufu Normal University, Rizhao, 276826, Shandong, China
| |
Collapse
|
2
|
Shabib Akhtar M, Chandrasekaran K, Saminathan S, Rajalingam SR, Mohsin N, Awad Alkarem Ahmed KA, Alhazmi Y, Walbi IA, Abdel-Wahab BA, Gholap AD, Faiyazuddin M, Sundaram G. Nanoengineered chitosan functionalized titanium dioxide biohybrids for bacterial infections and cancer therapy. Sci Rep 2024; 14:3705. [PMID: 38355697 PMCID: PMC10867112 DOI: 10.1038/s41598-024-52847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Nanoengineered chitosan functionalized titanium dioxide biohybrids (CTiO2@NPs) were prepared with Amomum subulatum Roxb extract via one-pot green method and assessed by UV-Vis spectroscopy, XRD, SEM and EDAX analyses. As revealed by XRD pattern, the nanohybrids exhibits a rutile TiO2 crystallites around 45 nm in size. The emergence of the Ti-O-Ti bond is identified by observing a peak between 400 and 800 cm-1. A wide bandgap (4.8 eV) has been observed in CTiO2@NPs, due to the quantum confinement effects and the oxygen vacancies reveal the intriguing potential of developed nanohybrids for various applications. Surface flaws were identified by observing an emission band at 382, 437, 482, 517, and 556 nm. They also exhibit better antibacterial performances using well diffusion method against Staphylococcus aureus, Bacillus substilis, Klebsiella pneumonia, and Escherichia coli. CTiO2@NPs were discovered to have free radical scavenging activity on DPPH analysis and exhibit IC50 value as 95.80 μg/mL and standard (Vitamin C) IC50 is 87.62 μg/mL. CTiO2@NPs exhibited better anticancer properties against the osteosarcoma (MG-63) cell line. All these findings suggest that there is a forum for further useful therapeutic applications. Therefore, we claim that nano-engineered carbohydrated TiO2 phytohybrid is a promising solution for bacterial infections and bone cancer.
Collapse
Affiliation(s)
- Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | | | - Sharmila Saminathan
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Siva Ranjani Rajalingam
- PG & Research Department of Physics, Cauvery College for Women, Tiruchchirappalli, Tamil Nadu, India
| | - Nehal Mohsin
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | | | - Yasir Alhazmi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ismail A Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, India
| | - Gowri Sundaram
- PG & Research Department of Physics, Cauvery College for Women, Tiruchchirappalli, Tamil Nadu, India.
| |
Collapse
|
3
|
Alsakhen N, Radwan ES, Zafer I, Abed Alfattah H, Shamkh IM, Rehman MT, Shahwan M, Khan KA, Ahmed SA. Computational analysis of bevacizumab binding with protein receptors for its potential anticancer activity. J Biomol Struct Dyn 2024:1-21. [PMID: 38281913 DOI: 10.1080/07391102.2024.2307445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Breast cancer poses a significant global challenge, prompting researchers to explore novel approaches for potential treatments. In this study, we investigated the binding free energy (ΔG) of bevacizumab, an anti-cancer therapy targeting angiogenesis through the inhibition of vascular endothelial growth factor (VEGF), with various proto-oncogenes including CDK4, EGFR, frizzled, IGFR, OmoMYC, and KIT. Our in-silico investigation revealed that hydrogen bonding is pivotal in inducing conformational changes within the DNA structure, impeding its replication and preventing cell death. Molecular docking results revealed the presence of crucial hydrogen bonds and supported the formation of stable bevacizumab complexes. The molecular docking scores for the tested complexes were CDK4 (Score = -7.2 kcal/mol), EGFR (Score = -8.5 kcal/mol), frizzled (Score = -6.9 kcal/mol), IGFR (Score = -7.8 kcal/mol), KIT (Score = -6.5 kcal/mol), and MYC (Score = -8.3 kcal/mol). The binding mode demonstrated vital hydrogen bonds correlated with the observed energy gap. Notably, the calculated binding free energies of the tested compounds are as follows: CDK4 (ΔG = 24275.195 ± 6411.293 kJ/mol), EGFR (ΔG = 363273.625 ± 8731.466 kJ/mol), frizzled (ΔG = 181751.990 ± 28438.515 kJ/mol), IGFR (ΔG = 162414.725 ± 10728.367 kJ/mol), KIT (ΔG = 40162.585 ± 4331.017 kJ/mol), and MYC (ΔG = 434783.463 ± 53989.676 kJ/mol). Furthermore, through extensive 100 ns MD simulations, we observed the formation of a stable bevacizumab complex structure. The simulations confirmed the stability of the bevacizumab complex with the proto-oncogenes. The results of this study highlight the potential of bevacizumab complex as a promising candidate for anticancer treatment. The identification of hydrogen bonding, along with the calculated binding free energies and molecular docking scores, provides valuable insights into the molecular interactions and stability of the bevacizumab complexes. These findings and the extensive MD simulations open new avenues for future research and development of bevacizumab as a targeted therapy for breast cancer and other related malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | | | - Imran Zafer
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, Pakistan
| | | | - Israa M Shamkh
- Botany and Microbiology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Md Tabish Rehman
- College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Shimaa A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
4
|
Zafar I, Safder A, Imran Afridi H, Riaz S, -ur-Rehman R, Unar A, Un Nisa F, Gaafar ARZ, Bourhia M, Wondmie GF, Sharma R, Kumar D. In silico and in vitro study of bioactive compounds of Nigella sativa for targeting neuropilins in breast cancer. Front Chem 2023; 11:1273149. [PMID: 37885828 PMCID: PMC10598785 DOI: 10.3389/fchem.2023.1273149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction: Breast cancer poses a significant global challenge, prompting researchers to explore novel approaches for potential treatments. Material and Methods: For in vitro study we used thin layer chromatography (TAC) for phytochemical screening, total antioxidant capacity (TLC) assay for antioxidant capacity, and hemolytic activity test for toxicity of Neuropilins (NRPs). We performed bioinformatic analyses to predict protein structures, molecular docking, pharmacophore modeling, and virtual screening to reveal interactions with oncogenes. We conducted 200 ns Molecular Dynamics (MD) simulations and MMGBSA calculations to assess the complex dynamics and stability. Results: We identified phytochemical constituents in Nigella sativa leaves, including tannins, saponins, steroids, and cardiac glycosides, while phlobatannins and terpenoids were absent. The leaves contained 9.4% ± 0.04% alkaloids and 1.9% ± 0.05% saponins. Methanol extract exhibited the highest yield and antioxidant capacity, with Total Flavonoid Content at 127.51 ± 0.76 mg/100 g and Total Phenolic Content at 134.39 ± 0.589 mg GAE/100 g. Hemolysis testing showed varying degrees of hemolysis for different extracts. In-silico analysis indicated stable Neuropilin complexes with key signaling pathways relevant for anti-cancer therapy. Molecular docking scores at different possesses (0, C-50, C -80, C-120,C -150, C -200 ns) revealed strong hydrogen bonding in the complexes and showed -12.9, -11.6, and -11.2 binding Affinities (kcal/mol) to support their stability. Our MD simulations analysis at 200ns confirmed the stability of Neuropilin complexes with the signaling pathways protein PI3K. The calculated binding free energies using MMGBSA provided valuable quantitative information on ligand potency on different time steps. These findings highlight the potential health benefits of N. sativa leaves and their possible role in anti-cancer treatments targeting angiogenesis. Conclusion: Nigella sativa leaves have shown significant medical potential due to their bioactive compounds, which exhibit strong properties in supporting organogenic processes related to cancer. Furthermore, studies have highlighted the promising role of neuropilins in anticancer treatment, demonstrating stable interactions and potential as targeted therapy specifically for breast cancer.
Collapse
Affiliation(s)
- Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Lahore, Pakistan
| | - Arfa Safder
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab, Pakistan
| | - Hassan Imran Afridi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Sania Riaz
- Faculty of Health and Life Sciences, Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Rizwan -ur-Rehman
- Faculty of Health and Life Sciences, Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Fakhar Un Nisa
- Depatment of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Dileep Kumar
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, India
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Pune, India
| |
Collapse
|
5
|
Falahianshafiei S, Akhtari J, Davoodi A, Pasha H. Evaluation of anticancer effect of colchicum autumnale L. Corm on breast cancer cell. BMC Complement Med Ther 2023; 23:357. [PMID: 37805533 PMCID: PMC10559398 DOI: 10.1186/s12906-023-04189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, and medicinal plants can prevent and play an inhibitory role for cancer. This study aims to evaluate the anticancer effect of colchicum autumnale L. Corm on breast cancer cell models. METHODS In this study, the alkaloid-rich extract was prepared using the percolation method and with methanol/water solvent (70:30). HFF2 normal cell line and MCF-7 breast cancer cell line were cultured in microplates (96 wells). Then cells were treated with concentrations of 62.5 to 2000 ng/ml of extract and concentrations of 62 to 1000 ng/ml of doxorubicin at regular intervals of 48 and 72 h, and the percentage of cell growth inhibition was calculated. Cytotoxicity of drugs was measured by the MTT assay method. IC50 values were calculated by Calcusyn software. Also, the P-value of < 0.05 was considered significant. RESULTS Alkaloid-rich extract of Colchicum autumnale plant inhibited breast cancer cell growth (MCF-7). The IC50 parameter showed more cytotoxic effects of Colchicum autumnale plant extract on the MCF-7 cancer cell line than HFF2 normal cell line for 48 and 72 h. In addition, with higher concentrations of the extract, cytotoxicity, and growth inhibitory effect increased significantly and in comparison to the doxorubicin was almost the same as cytotoxic. CONCLUSION This research provides a novel view into the development of new drugs for the treatment of cancer diseases. Colchicum autumnale plant extract had a significant cytotoxic effect like Doxorubicin drug on breast cancer cell line (MCF-7), which can alternatively treat and prevent breast cancer.
Collapse
Affiliation(s)
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Davoodi
- Department of Pharmacognosy and Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hajar Pasha
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
6
|
Dawood H, Celik I, Ibrahim RS. Computational biology and in vitro studies for anticipating cancer-related molecular targets of sweet wormwood (Artemisia annua). BMC Complement Med Ther 2023; 23:312. [PMID: 37684586 PMCID: PMC10492370 DOI: 10.1186/s12906-023-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Recently, it was shown that many natural extracts have positive effects against cancer, compared with chemotherapy or recent hormonal treatments. A. annua is an annual medicinal herb used in the traditional Chinese medicine. It has also been shown to inhibit the proliferation of various cancer cell lines. METHODS Multi-level modes of action of A. annua constituents in cancer therapy were investigated using an integrated approach of network pharmacology, molecular docking, dynamic simulations and in-vitro cytotoxicity testing on both healthy and cancer cells. RESULTS Network pharmacology-based analysis showed that the hit Artemisia annua constituents related to cancer targets were 3-(2-methylpropanoyl)-4-cadinene-3,11-diol, artemisinin G, O-(2-propenal) coniferaldehyde, (2-glyceryl)-O-coniferaldehyde and arteamisinin III, whereas the main cancer allied targets were NFKB1, MAP2K1 and AR. Sixty-eight significant signaling KEGG pathways with p < 0.01 were recognized, the most enriched of which were prostate cancer, breast cancer, melanoma and pancreatic cancer. Thirty-five biological processes were mainly regulated by cancer, involving cellular response to mechanical stimulus, positive regulation of gene expression and transcription. Molecular docking analysis of the top hit compounds against the most enriched target proteins showed that 3-(2-methylpropanoyl)-4-cadinene-3,11-diol and O-(2-propenal) coniferaldehyde exhibited the most stabilized interactions. Molecular dynamics simulations were performed to explain the stability of these two compounds in their protein-ligand complexes. Finally, confirmation of the potential anticancer activity was attained by in-vitro cytotoxicity testing of the extract on human prostate (PC-3), breast (MDA-MB-231), pancreatic (PANC-1) and melanoma (A375) cancerous cell lines. CONCLUSION This study presents deeper insights into A. annua molecular mechanisms of action in cancer for the first time using an integrated approaches verifying the herb's value.
Collapse
Affiliation(s)
- Hend Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
7
|
Rajamohan R, Ashokkumar S, Murugavel K, Lee YR. Preparation and Characterization of a Nano-Inclusion Complex of Quercetin with β-Cyclodextrin and Its Potential Activity on Cancer Cells. MICROMACHINES 2023; 14:1352. [PMID: 37512663 PMCID: PMC10386393 DOI: 10.3390/mi14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Quercetin (QRC), a flavonoid found in foods and plants such as red wine, onions, green tea, apples, and berries, possesses remarkable anti-inflammatory and antioxidant properties. These properties make it effective in combating cancer cells, reducing inflammation, protecting against heart disease, and regulating blood sugar levels. To enhance the potential of inclusion complexes (ICs) containing β-cyclodextrin (β-CD) in cancer therapy, they were transformed into nano-inclusion complexes (NICs). In this research, NICs were synthesized using ethanol as a reducing agent in the nanoprecipitation process. By employing FT-IR analysis, it was observed that hydrogen bonds were formed between QRC and β-CD. Moreover, the IC molecules formed NICs through the aggregation facilitated by intermolecular hydrogen bonds. Proton NMR results further confirmed the occurrence of proton shielding and deshielding subsequent to the formation of NICs. The introduction of β-CDs led to the development of a distinctive feather-like structure within the NICs. The particle sizes were consistently measured around 200 nm, and both SAED and XRD patterns indicated the absence of crystalline NICs, providing supporting evidence. Through cytotoxicity and fluorescence-assisted cell-sorting analysis, the synthesized NICs showed no significant damage in the cell line of MCF-7. In comparison to QRC alone, the presence of high concentrations of NICs exhibited a lesser degree of toxicity in normal human lung fibroblast MRC-5 cells. Moreover, the individual and combined administration of both low and high concentrations of NICs effectively suppressed the growth of cancer cells (MDA-MB-231). The solubility improvement resulting from the formation of QRC-NICs with β-CD enhanced the percentage of cell survival for MCF-7 cell types.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- Organic Materials Synthesis Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sekar Ashokkumar
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Kuppusamy Murugavel
- PG & Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India
| | - Yong Rok Lee
- Organic Materials Synthesis Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|