1
|
Kim YA, Siddiqui T, Blaze J, Cosacak MI, Winters T, Kumar A, Tein E, Sproul AA, Teich AF, Bartolini F, Akbarian S, Kizil C, Hargus G, Santa-Maria I. RNA methyltransferase NSun2 deficiency promotes neurodegeneration through epitranscriptomic regulation of tau phosphorylation. Acta Neuropathol 2023; 145:29-48. [PMID: 36357715 PMCID: PMC9807547 DOI: 10.1007/s00401-022-02511-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Abstract
Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AβO). Notably, AβO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany
| | - Jennifer Blaze
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany
| | - Tristan Winters
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Ellen Tein
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
| | - Gunnar Hargus
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Edificio E, Pozuelo de Alarcón, Madrid, 28223, Spain.
| |
Collapse
|
2
|
Kizil C, Sariya S, Kim YA, Rajabli F, Martin E, Reyes-Dumeyer D, Vardarajan B, Maldonado A, Haines JL, Mayeux R, Jiménez-Velázquez IZ, Santa-Maria I, Tosto G. Admixture Mapping of Alzheimer's disease in Caribbean Hispanics identifies a new locus on 22q13.1. Mol Psychiatry 2022; 27:2813-2820. [PMID: 35365809 PMCID: PMC9167722 DOI: 10.1038/s41380-022-01526-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is significantly more frequent in Hispanics than in non-Hispanic Whites. Ancestry may explain these differences across ethnic groups. To this end, we studied a large cohort of Caribbean Hispanics (CH, N = 8813) and tested the association between Local Ancestry (LA) and LOAD ("admixture mapping") to identify LOAD-associated ancestral blocks, separately for ancestral components (European [EUR], African [AFR], Native American[NA]) and jointly (AFR + NA). Ancestral blocks significant after permutation were fine-mapped employing multi-ethnic whole-exome sequencing (WES) to identify rare variants associated with LOAD (SKAT-O) and replicated in the UK Biobank WES dataset. Candidate genes were validated studying (A) protein expression in human LOAD and control brains; (B) two animal AD models, Drosophila and Zebrafish. In the joint AFR + NA model, we identified four significant ancestral blocks located on chromosomes 1 (p value = 8.94E-05), 6 (p value = 8.63E-05), 21 (p value = 4.64E-05) and 22 (p value = 1.77E-05). Fine-mapping prioritized the GCAT gene on chromosome 22 (SKAT-O p value = 3.45E-05) and replicated in the UK Biobank (SKAT-O p value = 0.05). In LOAD brains, a decrease of 28% in GCAT protein expression was observed (p value = 0.038), and GCAT knockdown in Amyloid-β42 Drosophila exacerbated rough eye phenotype (68% increase, p value = 4.84E-09). In zebrafish, gcat expression increased after acute amyloidosis (34%, p value = 0.0049), and decreased upon anti-inflammatory Interleukin-4 (39%, p value = 2.3E-05). Admixture mapping uncovered genomic regions harboring new LOAD-associated loci that might explain the observed different frequency of LOAD across ethnic groups. Our results suggest that the inflammation-related activity of GCAT is a response to amyloid toxicity, and reduced GCAT expression exacerbates AD pathology.
Collapse
Affiliation(s)
- Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Eden Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Aleyda Maldonado
- Department of Medicine, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 630 West 168th Street, New York, NY, 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Ivonne Z Jiménez-Velázquez
- Department of Medicine, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West168 th Street, New York, NY, 10032, USA.
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA.
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Aranjuez GF, Kim J, Jewett TJ. The Chlamydia trachomatis Early Effector Tarp Outcompetes Fascin in Forming F-Actin Bundles In Vivo. Front Cell Infect Microbiol 2022; 12:811407. [PMID: 35300377 PMCID: PMC8921475 DOI: 10.3389/fcimb.2022.811407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The intracellular pathogen Chlamydia trachomatis secretes multiple early effectors into the host cell to promote invasion. A key early effector during host cell entry, Tarp (translocated actin-recruiting phosphoprotein) is comprised of multiple protein domains known to have roles in cell signaling, G-actin nucleation and F-actin bundle formation. In vitro, the actin bundles generated by Tarp are uncharacteristically flexible, however, in vivo, the biological significance of Tarp-mediated actin bundles remains unknown. We hypothesize that Tarp's ability to generate unique actin bundles, in part, facilitates chlamydial entry into epithelial cells. To study the in vivo interaction between Tarp and F-actin, we transgenically expressed Tarp in Drosophila melanogaster tissues. Tarp expressed in Drosophila is phosphorylated and forms F-actin-enriched aggregates in tissues. To gain insight into the significance of Tarp actin bundles in vivo, we utilized the well-characterized model system of mechanosensory bristle development in Drosophila melanogaster. Tarp expression in wild type flies produced curved bristles, indicating a perturbation in F-actin dynamics during bristle development. Two F-actin bundlers, Singed/Fascin and Forked/Espin, are important for normal bristle shape. Surprisingly, Tarp expression in the bristles displaced Singed/Fascin away from F-actin bundles. Tarp's competitive behavior against Fascin during F-actin bundling was confirmed in vitro. Loss of either singed or forked in flies leads to highly deformed bristles. Strikingly, Tarp partially rescued the loss of singed, reducing the severity of the bristle morphology defect. This work provides in vivo confirmation of Tarp's F-actin bundling activity and further uncovers a competitive behavior against the host bundler Singed/Fascin during bundle assembly. Also, we demonstrate the utility of Drosophila melanogaster as an in vivo cell biological platform to study bacterial effector function.
Collapse
Affiliation(s)
- George F. Aranjuez
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | | | | |
Collapse
|
4
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
5
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. Proc Natl Acad Sci U S A 2020; 117:2645-2655. [PMID: 31964836 DOI: 10.1073/pnas.1908787117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The main risk factor for stomach cancer, the third most common cause of cancer death worldwide, is infection with Helicobacter pylori bacterial strains that inject cytotoxin-associated gene A (CagA). As the first described bacterial oncoprotein, CagA causes gastric epithelial cell transformation by promoting an epithelial-to-mesenchymal transition (EMT)-like phenotype that disrupts junctions and enhances motility and invasiveness of the infected cells. However, the mechanism by which CagA disrupts gastric epithelial cell polarity to achieve its oncogenicity is not fully understood. Here we found that the apoptosis-stimulating protein of p53 2 (ASPP2), a host tumor suppressor and an important CagA target, contributes to the survival of cagA-positive H. pylori in the lumen of infected gastric organoids. Mechanistically, the CagA-ASPP2 interaction is a key event that promotes remodeling of the partitioning-defective (PAR) polarity complex and leads to loss of cell polarity of infected cells. Blockade of cagA-positive H. pylori ASPP2 signaling by inhibitors of the EGFR (epidermal growth factor receptor) signaling pathway-identified by a high-content imaging screen-or by a CagA-binding ASPP2 peptide, prevents the loss of cell polarity and decreases the survival of H. pylori in infected organoids. These findings suggest that maintaining the host cell-polarity barrier would reduce the detrimental consequences of infection by pathogenic bacteria, such as H. pylori, that exploit the epithelial mucosal surface to colonize the host environment.
Collapse
|
7
|
Peyer SM, Heath-Heckman EAC, McFall-Ngai MJ. Characterization of the cell polarity gene crumbs during the early development and maintenance of the squid-vibrio light organ symbiosis. Dev Genes Evol 2017; 227:375-387. [PMID: 28105525 PMCID: PMC5519459 DOI: 10.1007/s00427-017-0576-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
Abstract
The protein Crumbs is a determinant of apical-basal cell polarity and plays a role in apoptosis of epithelial cells and their protection against photodamage. Using the squid-vibrio system, a model for development of symbiotic partnerships, we examined the modulation of the crumbs gene in host epithelial tissues during initiation and maintenance of the association. The extracellular luminous symbiont Vibrio fischeri colonizes the apical surfaces of polarized epithelia in deep crypts of the Euprymna scolopes light organ. During initial colonization each generation, symbiont harvesting is potentiated by the biochemical and biophysical activity of superficial ciliated epithelia, which are several cell layers from the crypt epithelia where the symbionts reside. Within hours of crypt colonization, the symbionts induce the cell death mediated regression of the remote superficial ciliated fields. However, the crypt cells directly interacting with the symbiont are protected from death. In the squid host, we characterized the gene and encoded protein during light organ morphogenesis and in response to symbiosis. Features of the protein sequence and structure, phylogenetic relationships, and localization patterns in the eye supported assignment of the squid protein to the Crumbs family. In situ hybridization revealed that the crumbs transcript shows opposite expression at the onset of symbiosis in the two different regions of the light organ: elevated levels in the superficial epithelia were attenuated whereas low levels in the crypt epithelia were turned up. Although a rhythmic association in which the host controls the symbiont population over the day-night cycle begins in the juvenile upon colonization, cycling of crumbs was evident only in the adult organ with peak expression coincident with maximum symbiont population and luminescence. Our results provide evidence that crumbs responds to symbiont cues that induce developmental apoptosis and to symbiont population dynamics correlating with luminescence-based stress throughout the duration of the host-microbe association.
Collapse
Affiliation(s)
- Suzanne M Peyer
- School of Medicine and Public Health, Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| | - Elizabeth A C Heath-Heckman
- School of Medicine and Public Health, Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, 53706, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Margaret J McFall-Ngai
- School of Medicine and Public Health, Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
8
|
Jones TA, Hernandez DZ, Wong ZC, Wandler AM, Guillemin K. The bacterial virulence factor CagA induces microbial dysbiosis that contributes to excessive epithelial cell proliferation in the Drosophila gut. PLoS Pathog 2017; 13:e1006631. [PMID: 29049360 PMCID: PMC5648253 DOI: 10.1371/journal.ppat.1006631] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota facilitate many aspects of human health and development, but dysbiotic microbiota can promote hyperplasia and inflammation and contribute to human diseases such as cancer. Human patients infected with the gastric cancer-causing bacterium Helicobacter pylori have altered microbiota; however, whether dysbiosis contributes to disease in this case is unknown. Many H. pylori human disease phenotypes are associated with a potent virulence protein, CagA, which is translocated into host epithelial cells where it alters cell polarity and manipulates host-signaling pathways to promote disease. We hypothesized that CagA alone could contribute to H. pylori pathogenesis by inducing microbial dysbiosis that promotes disease. Here we use a transgenic Drosophila model of CagA expression to genetically disentangle the effects of the virulence protein CagA from that of H. pylori infection. We found that expression of CagA within Drosophila intestinal stem cells promotes excess cell proliferation and is sufficient to alter host microbiota. Rearing CagA transgenic flies germ-free revealed that the dysbiotic microbiota contributes to cell proliferation phenotypes and also elicits expression of innate immune components, Diptericin and Duox. Further investigations revealed interspecies interactions are required for this dysbiotic CagA-dependent microbiota to promote proliferation in CagA transgenic and healthy control Drosophila. Our model establishes that CagA can alter gut microbiota and exacerbate cell proliferation and immune phenotypes previously attributed to H. pylori infection. This work provides valuable new insights into the mechanisms by which interactions between a specific virulence factor and the resident microbiota can contribute to the development and progression of disease. Microbial communities in the gut, termed microbiota are important for human health, and when altered can sometimes promote disease. Infections, such as with the cancer-causing bacterium Helicobacter pylori, can cause altered gut microbiota, but why these alterations occur and whether the altered communities contribute to disease remain unknown. Here, we use Drosophila expressing the H. pylori disease-causing protein CagA, to model this virulence factor’s effect on host pathology and microbiota. We found that expression of CagA in the Drosophila gut causes excessive cell proliferation and immune activation, hallmarks of H. pylori infection. Notably, these traits did not occur when flies were reared in the absence of microbes. Further examination reveals that CagA-expressing flies have an altered gut microbial community that is sufficient to promote cell proliferation even in normal flies. This proliferative activity required the presence of two interacting bacteria, illustrating a new model for disease-promoting microbiota. This work demonstrates how a bacterial protein can cause disease indirectly through altering the microbial ecology of the host, and it suggests future treatments for infections that rely on manipulating the microbiota to mitigate disease pathology.
Collapse
Affiliation(s)
- Tiffani Alvey Jones
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| | - Diane Z. Hernandez
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| | - Zoë C. Wong
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| | - Anica M. Wandler
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Tegtmeyer N, Neddermann M, Asche CI, Backert S. Subversion of host kinases: a key network in cellular signaling hijacked byHelicobacter pyloriCagA. Mol Microbiol 2017; 105:358-372. [DOI: 10.1111/mmi.13707] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Matthias Neddermann
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Carmen Isabell Asche
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| |
Collapse
|
10
|
Caron TJ, Scott KE, Fox JG, Hagen SJ. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol 2015; 21:11411-11427. [PMID: 26523106 PMCID: PMC4616217 DOI: 10.3748/wjg.v21.i40.11411] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/26/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Long-term chronic infection with Helicobacter pylori (H. pylori) is a risk factor for gastric cancer development. In the multi-step process that leads to gastric cancer, tight junction dysfunction is thought to occur and serve as a risk factor by permitting the permeation of luminal contents across an otherwise tight mucosa. Mechanisms that regulate tight junction function and structure in the normal stomach, or dysfunction in the infected stomach, however, are largely unknown. Although conventional tight junction components are expressed in gastric epithelial cells, claudins regulate paracellular permeability and are likely the target of inflammation or H. pylori itself. There are 27 different claudin molecules, each with unique properties that render the mucosa an intact barrier that is permselective in a way that is consistent with cell physiology. Understanding the architecture of tight junctions in the normal stomach and then changes that occur during infection is important but challenging, because most of the reports that catalog claudin expression in gastric cancer pathogenesis are contradictory. Furthermore, the role of H. pylori virulence factors, such as cytotoxin-associated gene A and vacoulating cytotoxin, in regulating tight junction dysfunction during infection is inconsistent in different gastric cell lines and in vivo, likely because non-gastric epithelial cell cultures were initially used to unravel the details of their effects on the stomach. Hampering further study, as well, is the relative lack of cultured cell models that have tight junction claudins that are consistent with native tissues. This summary will review the current state of knowledge about gastric tight junctions, normally and in H. pylori infection, and make predictions about the consequences of claudin reorganization during H. pylori infection.
Collapse
|
11
|
Fauvarque MO. Small flies to tackle big questions: assaying complex bacterial virulence mechanisms usingDrosophila melanogaster. Cell Microbiol 2014; 16:824-33. [DOI: 10.1111/cmi.12292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Marie-Odile Fauvarque
- Univ. Grenoble Alpes; iRTSV-BGE; F-38000 Grenoble France
- CEA; iRTSV-BGE; F-38000 Grenoble France
- INSERM; BGE; F-38000 Grenoble France
| |
Collapse
|
12
|
Panayidou S, Ioannidou E, Apidianakis Y. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence 2014; 5:253-69. [PMID: 24398387 DOI: 10.4161/viru.27524] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila-microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection.
Collapse
Affiliation(s)
- Stavria Panayidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | - Eleni Ioannidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | | |
Collapse
|
13
|
Merrell DS, Stintzi A. Research advances in the study of Campylobacter, Helicobacter, and related organisms. Front Cell Infect Microbiol 2012; 2:159. [PMID: 23267439 PMCID: PMC3525878 DOI: 10.3389/fcimb.2012.00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/22/2023] Open
Affiliation(s)
- D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services UniversityBethesda, MD, USA
- *Correspondence: ;
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of OttawaOttawa, ON, Canada
- *Correspondence: ;
| |
Collapse
|
14
|
Wandler AM, Guillemin K. Transgenic expression of the Helicobacter pylori virulence factor CagA promotes apoptosis or tumorigenesis through JNK activation in Drosophila. PLoS Pathog 2012; 8:e1002939. [PMID: 23093933 PMCID: PMC3475654 DOI: 10.1371/journal.ppat.1002939] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer development is strongly correlated with infection by Helicobacter pylori possessing the effector protein CagA. Using a transgenic Drosophila melanogaster model, we show that CagA expression in the simple model epithelium of the larval wing imaginal disc causes dramatic tissue perturbations and apoptosis when CagA-expressing and non-expressing cells are juxtaposed. This cell death phenotype occurs through activation of JNK signaling and is enhanced by loss of the neoplastic tumor suppressors in CagA-expressing cells or loss of the TNF homolog Eiger in wild type neighboring cells. We further explored the effects of CagA-mediated JNK pathway activation on an epithelium in the context of oncogenic Ras activation, using a Drosophila model of metastasis. In this model, CagA expression in epithelial cells enhances the growth and invasion of tumors in a JNK-dependent manner. These data suggest a potential role for CagA-mediated JNK pathway activation in promoting gastric cancer progression. The gastric pathogen Helicobacter pylori infects an estimated 50% of the world's population and is a major risk factor for the development of gastric cancer. Strains of H. pylori that can inject the CagA effector protein into host cells are known to be more virulent, but the potential contributions of host genetics to pathogenesis are not well-understood. Using transgenic Drosophila melanogaster, we show that the genetic context of both the host cells in which CagA is expressed and their neighboring cells changes CagA's effects on epithelial tissue. When CagA is expressed in a subset of cells within an epithelium, it disrupts tissue integrity and induces apoptosis through activation of JNK signaling, a pathway that functions to remove aberrant cells from an epithelium. CagA's proapoptotic effects are inhibited by neoplastic tumor suppressor genes in CagA-expressing cells, and by the tumor necrosis factor homolog Eiger in neighboring cells. In contrast, when CagA is coexpressed with oncogenic Ras in a Drosophila model of metastasis, it enhances the growth and invasion of tumors in a JNK-dependent manner. Our study demonstrates how changes in host genetics can cooperate with activation of JNK signaling by the bacterial virulence factor CagA to promote tumorigenesis.
Collapse
Affiliation(s)
- Anica M Wandler
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | |
Collapse
|