1
|
Markowska K, Szymanek-Majchrzak K, Pituch H, Majewska A. Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities. Int J Mol Sci 2024; 25:12808. [PMID: 39684519 DOI: 10.3390/ijms252312808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Biofilms are complex, highly organized structures formed by microorganisms, with functional cell arrangements that allow for intricate communication. Severe clinical challenges occur when anaerobic bacterial species establish long-lasting infections, especially those involving biofilms. These infections can occur in device-related settings (e.g., implants) as well as in non-device-related conditions (e.g., inflammatory bowel disease). Within biofilms, bacterial cells communicate by producing and detecting extracellular signals, particularly through specific small signaling molecules known as autoinducers. These quorum-sensing signals are crucial in all steps of biofilm formation: initial adhesion, maturation, and dispersion, triggering gene expression that coordinates bacterial virulence factors, stimulates immune responses in host tissues, and contributes to antibiotic resistance development. Within anaerobic biofilms, bacteria communicate via quorum-sensing molecules such as N-Acyl homoserine lactones (AHLs), autoinducer-2 (AI-2), and antimicrobial molecules (autoinducing peptides, AIPs). To effectively combat pathogenic biofilms, understanding biofilm formation mechanisms and bacterial interactions is essential. The strategy to disrupt quorum sensing, termed quorum quenching, involves methods like inactivating or enzymatically degrading signaling molecules, competing with signaling molecules for binding sites, or noncompetitively binding to receptors, and blocking signal transduction pathways. In this review, we comprehensively analyzed the fundamental molecular mechanisms of quorum sensing in biofilms formed by anaerobic bacteria. We also highlight quorum quenching as a promising strategy to manage bacterial infections associated with anaerobic bacterial biofilms.
Collapse
Affiliation(s)
- Kinga Markowska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Ksenia Szymanek-Majchrzak
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Dallavilla T, Galiè S, Sambruni G, Borin S, Fazio N, Fumagalli-Romario U, Manzo T, Nezi L, Schaefer MH. Differences in the molecular organisation of tumours along the colon are linked to interactions within the tumour ecosystem. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167311. [PMID: 38909851 DOI: 10.1016/j.bbadis.2024.167311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Tumours exhibit significant heterogeneity in their molecular profiles across patients, largely influenced by the tissue of origin, where certain driver gene mutations are predominantly associated with specific cancer types. Here, we unveil an additional layer of complexity: some cancer types display anatomic location-specific mutation profiles akin to tissue-specificity. To better understand this phenomenon, we concentrate on colon cancer. While prior studies have noted changes of the frequency of molecular alterations along the colon, the underlying reasons and whether those changes occur rather gradual or are distinct between the left and right colon, remain unclear. Developing and leveraging stringent statistical models on molecular data from 522 colorectal tumours from The Cancer Genome Atlas, we reveal disparities in molecular properties between the left and right colon affecting many genes. Interestingly, alterations in genes responsive to environmental cues and properties of the tumour ecosystem, including metabolites which we quantify in a cohort of 27 colorectal cancer patients, exhibit continuous trends along the colon. Employing network methodologies, we uncover close interactions between metabolites and genes, including drivers of colon cancer, showing continuous abundance or alteration profiles. This underscores how anatomic biases in the composition and interactions within the tumour ecosystem help explaining gradients of carcinogenesis along the colon.
Collapse
Affiliation(s)
- Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Serena Galiè
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona Borin
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
3
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Costeira R, Aduse-Opoku J, Vernon JJ, Rodriguez-Algarra F, Joseph S, Devine DA, Marsh PD, Rakyan V, Curtis MA, Bell JT. Hemin availability induces coordinated DNA methylation and gene expression changes in Porphyromonas gingivalis. mSystems 2023; 8:e0119322. [PMID: 37436062 PMCID: PMC10470040 DOI: 10.1128/msystems.01193-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/12/2023] [Indexed: 07/13/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease.
Collapse
Affiliation(s)
- Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jon J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Francisco Rodriguez-Algarra
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Susan Joseph
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Deirdre A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Philip D. Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Vardhman Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael A. Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Contribution of -Omics Technologies in the Study of Porphyromonas gingivalis during Periodontitis Pathogenesis: A Minireview. Int J Mol Sci 2022; 24:ijms24010620. [PMID: 36614064 PMCID: PMC9820714 DOI: 10.3390/ijms24010620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/31/2022] Open
Abstract
Periodontitis is a non-communicable chronic inflammatory disease characterized by the progressive and irreversible breakdown of the soft periodontal tissues and resorption of teeth-supporting alveolar bone. The etiology of periodontitis involves dysbiotic shifts in the diversity of microbial communities inhabiting the subgingival crevice, which is dominated by anaerobic Gram-negative bacteria, including Porphyromonas gingivalis. Indeed, P. gingivalis is a keystone pathogen with a repertoire of attributes that allow it to colonize periodontal tissues and influence the metabolism, growth rate, and virulence of other periodontal bacteria. The pathogenic potential of P. gingivalis has been traditionally analyzed using classical biochemical and molecular approaches. However, the arrival of new techniques, such as whole-genome sequencing, metagenomics, metatranscriptomics, proteomics, and metabolomics, allowed the generation of high-throughput data, offering a suitable option for bacterial analysis, allowing a deeper understanding of the pathogenic properties of P. gingivalis and its interaction with the host. In the present review, we revise the use of the different -omics technologies and techniques used to analyze bacteria and discuss their potential in studying the pathogenic potential of P. gingivalis.
Collapse
|
6
|
Oogai Y, Nakata M. Small regulatory RNAs of oral streptococci and periodontal bacteria. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:209-216. [PMID: 34745393 PMCID: PMC8551640 DOI: 10.1016/j.jdsr.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022] Open
Abstract
Small regulatory RNAs (sRNAs) belong to a family of non-coding RNAs, and many of which regulate expression of genes via interaction with mRNA. The recent popularity of high-throughput next generation sequencers have presented abundant sRNA-related data, including sRNAs of several different oral bacterial species. Some sRNA candidates have been validated in terms of their expression and interaction with target mRNAs. Since the oral cavity is an environment constantly exposed to various stimuli, such as fluctuations in temperature and pH, and osmotic pressure, as well as changes in nutrient availability, oral bacteria require rapid control of gene expression for adaptation to such diverse conditions, while regulation via interactions of sRNAs with mRNA provides advantages for rapid adaptation. This review summarizes methods effective for identification and validation of sRNAs, as well as sRNAs identified to be associated with oral bacterial species, including cariogenic and periodontal pathogens, together with their confirmed and putative target genes.
Collapse
Affiliation(s)
- Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| |
Collapse
|
7
|
Lulamba TE, Green E, Serepa-Dlamini MH. Genome assembly and annotation of Photorhabdus heterorhabditis strain ETL reveals genetic features involved in pathogenicity with its associated entomopathogenic nematode and anti-host effectors with biocontrol potential applications. Gene 2021; 795:145780. [PMID: 34147570 DOI: 10.1016/j.gene.2021.145780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
The genome sequences of entomopathogenic nematode (EPN) bacteria and their functional analyses can lead to the genetic engineering of the bacteria for use as biocontrol agents. The bacterial symbiont Photorhabdus heterorhabditis strain ETL isolated from an insect pathogenic nematode, Heterorhabditis zealandica strain ETL, collected in the northernmost region of South Africa was studied to reveal information that can be useful in the design of improvement strategies for both effective and liquid production method of EPN-based pesticides. The strain ETL genome was found closely related to the type strain genome of P. australis DSM 17,609 (~60 to 99.9% CDSs similarity), but closely related to the not yet genome-sequenced type strain, P. heterorhabditis. It has a genome size of 4,866,148 bp and G + C content of 42.4% similar to other Photorhabdus. It contains 4,351 protein coding genes (CDSs) of which, at least 84% are shared with the de facto type strain P. luminescens subsp. laumondii TTO1, and has 318 unknown CDSs and the genome has a higher degree of plasticity allowing it to adapt to different environmental conditions, and to be virulent against various insects; observed through genes acquired through horizontal gene transfer mechanisms, clustered regularly interspaced short palindromic repeats, non-determined polyketide- and non-ribosomal peptide- synthase gene clusters, and many genes associated with uncharacterized proteins; which also justify the strain ETL's genes differences (quantity and quality) compared to P. luminescens subsp. laumondii TTO1. The protein coding sequences contained genes with both bio-engineering and EPNs mass production importance, of which numerous are uncharacterized.
Collapse
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
8
|
Yao K, Cai JY, Zhao L, Wu YF, Zhao ZH, Shen DN. Research progress on two-component signal transduction systems in Porphyromonas gingivalis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:88-93. [PMID: 33723942 DOI: 10.7518/hxkq.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Porphyromonas gingivalis (P. gingivalis), a Gram-negative oral anaerobe, is considered to be a major pathogenic agent involved in the onset and progression of chronic periodontitis. P. gingivalis must be able to perceive and respond to the complicated changes in host to survive the environmental challenges, in which the two-component signal transduction systems (TCSs) play critical roles by connecting input signals to cellular physiological output. Canonical TCS consists of a sensor histidine kinase and a cognate response regulator that functions via a phosphorylation cascade. In this review, the roles of TCSs in P. gingivalis were demonstrated by illustrating the target genes and modulation modes, which may help elucidate the underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Ke Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing-Yi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Fei Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dao-Nan Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Ryan D, Prezza G, Westermann AJ. An RNA-centric view on gut Bacteroidetes. Biol Chem 2020; 402:55-72. [PMID: 33544493 DOI: 10.1515/hsz-2020-0230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/21/2020] [Indexed: 01/26/2023]
Abstract
Bacteria employ noncoding RNAs to maintain cellular physiology, adapt global gene expression to fluctuating environments, sense nutrients, coordinate their interaction with companion microbes and host cells, and protect themselves against bacteriophages. While bacterial RNA research has made fundamental contributions to biomedicine and biotechnology, the bulk of our knowledge of RNA biology stems from the study of a handful of aerobic model species. In comparison, RNA research is lagging in many medically relevant obligate anaerobic species, in particular the numerous commensal bacteria comprising our gut microbiota. This review presents a guide to RNA-based regulatory mechanisms in the phylum Bacteroidetes, focusing on the most abundant bacterial genus in the human gut, Bacteroides spp. This includes recent case reports on riboswitches, an mRNA leader, cis- and trans-encoded small RNAs (sRNAs) in Bacteroides spp., and a survey of CRISPR-Cas systems across Bacteroidetes. Recent work from our laboratory now suggests the existence of hundreds of noncoding RNA candidates in Bacteroides thetaiotaomicron, the emerging model organism for functional microbiota research. Based on these collective observations, we predict mechanistic and functional commonalities and differences between Bacteroides sRNAs and those of other model bacteria, and outline open questions and tools needed to boost Bacteroidetes RNA research.
Collapse
Affiliation(s)
- Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany.,Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany
| |
Collapse
|
10
|
Kalimuthu S, Cheung BP, Yau JY, Shanmugam K, Solomon AP, Neelakantan P. A Novel Small Molecule, 1,3-di-m-tolyl-urea, Inhibits and Disrupts Multispecies Oral Biofilms. Microorganisms 2020; 8:E1261. [PMID: 32825310 PMCID: PMC7570320 DOI: 10.3390/microorganisms8091261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
An imbalance of homeostasis between the microbial communities and the host system leads to dysbiosis in oral micro flora. DMTU (1,3-di-m-tolyl-urea) is a biocompatible compound that was shown to inhibit Streptococcus mutans biofilm by inhibiting its communication system (quorum sensing). Here, we hypothesized that DMTU is able to inhibit multispecies biofilms. We developed a multispecies oral biofilm model, comprising an early colonizer Streptococcus gordonii, a bridge colonizer Fusobacterium nucleatum, and late colonizers Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. We performed comprehensive investigations to demonstrate the effect of DMTU on planktonic cells and biofilms. Our findings showed that DMTU inhibits and disrupts multispecies biofilms without bactericidal effects. Mechanistic studies revealed a significant down regulation of biofilm and virulence-related genes in P. gingivalis. Taken together, our study highlights the potential of DMTU to inhibit polymicrobial biofilm communities and their virulence.
Collapse
Affiliation(s)
- Shanthini Kalimuthu
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Becky P.K. Cheung
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Joyce Y.Y. Yau
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| |
Collapse
|
11
|
Śmiga M, Stępień P, Olczak M, Olczak T. PgFur participates differentially in expression of virulence factors in more virulent A7436 and less virulent ATCC 33277 Porphyromonas gingivalis strains. BMC Microbiol 2019; 19:127. [PMID: 31185896 PMCID: PMC6558696 DOI: 10.1186/s12866-019-1511-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Porphyromonas gingivalis is considered a keystone pathogen responsible for chronic periodontitis. Although several virulence factors produced by this bacterium are quite well characterized, very little is known about regulatory mechanisms that allow different strains of P. gingivalis to efficiently survive in the hostile environment of the oral cavity, a typical habitat characterized by low iron and heme concentrations. The aim of this study was to characterize P. gingivalis Fur homolog (PgFur) in terms of its role in production of virulence factors in more (A7436) and less (ATCC 33277) virulent strains. Results Expression of a pgfur depends on the growth phase and iron/heme concentration. To better understand the role played by the PgFur protein in P. gingivalis virulence under low- and high-iron/heme conditions, a pgfur-deficient ATCC 33277 strain (TO16) was constructed and its phenotype compared with that of a pgfur A7436-derived mutant strain (TO6). In contrast to the TO6 strain, the TO16 strain did not differ in the growth rate and hemolytic activity compared with the ATCC 33277 strain. However, both mutant strains were more sensitive to oxidative stress and they demonstrated changes in the production of lysine- (Kgp) and arginine-specific (Rgp) gingipains. In contrast to the wild-type strains, TO6 and TO16 mutant strains produced larger amounts of HmuY protein under high iron/heme conditions. We also demonstrated differences in production of glycoconjugates between the A7436 and ATCC 33277 strains and we found evidence that PgFur protein might regulate glycosylation process. Moreover, we revealed that PgFur protein plays a role in interactions with other periodontopathogens and is important for P. gingivalis infection of THP-1-derived macrophages and survival inside the cells. Deletion of the pgfur gene influences expression of many transcription factors, including two not yet characterized transcription factors from the Crp/Fnr family. We also observed lower expression of the CRISPR/Cas genes. Conclusions We show here for the first time that inactivation of the pgfur gene exerts a different influence on the phenotype of the A7436 and ATCC 33277 strains. Our findings further support the hypothesis that PgFur regulates expression of genes encoding surface virulence factors and/or genes involved in their maturation. Electronic supplementary material The online version of this article (10.1186/s12866-019-1511-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Paulina Stępień
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Mariusz Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland.
| |
Collapse
|
12
|
Sánchez MC, Romero-Lastra P, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of planktonic Porphyromonas gingivalis ATCC 33277 in the presence of a growing biofilm versus planktonic cells. BMC Microbiol 2019; 19:58. [PMID: 30866810 PMCID: PMC6417203 DOI: 10.1186/s12866-019-1423-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis, a microorganism residing in the oral cavity within complex multispecies biofilms, is one of the keystone pathogens in the onset and progression of periodontitis. In this in vitro study, using DNA microarray, we investigate the differential gene expression of Porphyromonas gingivalis ATCC 33277 when growing in the presence or in absence of its own monospecies biofilm. RESULTS Approximately 1.5% of genes (28 out of 1909 genes, at 1.5 fold change or more, p-value < 0.05) were differentially expressed by P. gingivalis cells when in the presence of a biofilm. These genes were predominantly related to the metabolism of iron, bacterial adhesion, invasion, virulence and quorum-sensing system. The results from microarrays were consistent with those obtained by RT-qPCR. CONCLUSION This study provides insight on the transcriptional changes of planktonic P. gingivalis cells when growing in the presence of a biofilm. The resulting phenotypes provide information on changes occurring in the gene expression of this pathogen.
Collapse
Affiliation(s)
- María C. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | | | - Honorato Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Arancha Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Elena Figuero
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - David Herrera
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
- Department of Dental Clinical Specialities (DDCS), Faculty of Odontology, Plaza Ramón y Cajal s/n Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
13
|
Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, Miller DP, Hutcherson JA, Wang T, Beck DAC, Whiteley M, Amano A, Wang H, Marcotte EM, Hackett M, Lamont RJ. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol 2017; 2:1493-1499. [PMID: 28924191 PMCID: PMC5678995 DOI: 10.1038/s41564-017-0021-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential 1 . Periodontitis, which is the sixth most prevalent infectious disease worldwide 2 , ensues from the action of dysbiotic polymicrobial communities 3 . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo 3,4 . The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis-S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - John R Houser
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik L Hendrickson
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Samar A Alghamdi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Tiansong Wang
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - David A C Beck
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of eScience, University of Washington, Seattle, WA, 98195, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Murray Hackett
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA.
| |
Collapse
|
14
|
Lu W, Xin Z, Shida W, Jiyao L, Xin X. [Role of small noncoding RNA in the regulation of bacterial virulence]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 34:433-438. [PMID: 28317367 DOI: 10.7518/hxkq.2016.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the long-term interaction between pathogens and host, the pathogens regulate the expression of related viru-lence genes to fit the host environment in response to the changes in the host microenvironment. Gene expression was believed to be controlled mainly at the level of transcription initiation by repressors or activators. Recent studies have revealed that small noncoding RNAs (sRNAs) are key regulators in bacterial pathogenesis. sRNA in bacteria is a noncoding RNA with length ranging from 50 to 500 nucleotides. Pathogens can sense the changes in the host environment and consequently regulate the expression of virulence genes by sRNAs. This condition promotes the ability of pathogens to survive within the host, which is beneficial to the invasion and pathogenicity of pathogens. In contrast to transcriptional factors, sRNA-mediated gene regu-lation makes rapid and sensitive responses to environmental cues. Many sRNAs involved in bacterial virulence and pathogenesis have been identified. These sRNAs are key components of coordinated regulation networks, playing important roles in regulating the expression of virulence genes at post-transcriptional level. This review aims to provide an overview on the molecular mechanisms and roles of sRNAs in the regulation of bacterial virulence.
Collapse
Affiliation(s)
- Wang Lu
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Xin
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wang Shida
- State Key Laboratory of Oral Diseases, Dept. of General Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiyao
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Xin
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Romero-Lastra P, Sánchez MC, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. PLoS One 2017; 12:e0174669. [PMID: 28369099 PMCID: PMC5378342 DOI: 10.1371/journal.pone.0174669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression.
Collapse
Affiliation(s)
- P. Romero-Lastra
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - MC. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - H. Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - A. Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - E. Figuero
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - D. Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - M. Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Janus MM, Crielaard W, Zaura E, Keijser BJ, Brandt BW, Krom BP. A novel compound to maintain a healthy oral plaque ecology in vitro. J Oral Microbiol 2016; 8:32513. [PMID: 27476444 PMCID: PMC4967710 DOI: 10.3402/jom.v8.32513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/14/2022] Open
Abstract
Objective Dental caries is caused by prolonged episodes of low pH due to acid production by oral biofilms. Bacteria within such biofilms communicate via quorum sensing (QS). QS regulates several phenotypic biofilm parameters, such as biofilm formation and the production of virulence factors. In this study, we evaluated the effect of several QS modifiers on growth and the cariogenic potential of microcosm oral biofilms. Methods Biofilms were inoculated with pooled saliva and cultured in the presence of sucrose for 48 and 96 h. QS modifiers (or carrier controls) were continuously present. Lactic acid accumulation capacities were compared to evaluate the cariogenic potential of the biofilms. Subsequently, biofilm growth was quantified by determining colony forming unit counts (CFUs) and their ecology by 16S rDNA-based microbiome analyses. The minimal inhibitory concentration (MIC) for several Streptococcus spp. was determined using microbroth dilution. Results Of the tested QS modifiers only 3-oxo-N-(2-oxocyclohexyl)dodecanamide (3-Oxo-N) completely abolished lactic acid accumulation by the biofilms without affecting biofilm growth. This compound was selected for further investigation. The active range of 3-Oxo-N was 10–100 µM. The homologous QS molecule, acyl homoserine lactone C12, did not counteract the reduction in lactic acid accumulation, suggesting a mechanism other than QS inhibition. Microbial ecology analyses showed a reduction in the relative abundance of Streptococcus spp. in favor of the relative abundance of Veillonella spp. in the 3-Oxo-N exposed biofilms. The MIC of 3-Oxo-N for several streptococcal species varied between 8 and 32 µM. Conclusion 3-Oxo-N changes the ecological homeostasis of in vitro dental plaque. It reduces its cariogenic potential by minimizing lactic acid accumulation. Based on our in vitro data, 3-Oxo-N represents a promising compound in maintaining a healthy, non-cariogenic, ecology in in vivo dental plaque.
Collapse
Affiliation(s)
- Marleen M Janus
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands.,Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands.,Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands.,Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Bart J Keijser
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands.,Top Institute Food and Nutrition, Wageningen, The Netherlands.,Microbiology and Systems Biology, TNO Earth, Environmental and Life Sciences, Zeist, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands.,Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands.,Top Institute Food and Nutrition, Wageningen, The Netherlands;
| |
Collapse
|
17
|
|
18
|
Leclerc J, Rosenfeld E, Trainini M, Martin B, Meuric V, Bonnaure-Mallet M, Baysse C. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance. PLoS One 2015; 10:e0143808. [PMID: 26629705 PMCID: PMC4668044 DOI: 10.1371/journal.pone.0143808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.
Collapse
Affiliation(s)
- Julia Leclerc
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
| | - Eric Rosenfeld
- UMR CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
| | - Mathieu Trainini
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
| | - Bénédicte Martin
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
| | - Vincent Meuric
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
- UMR CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
- CHU Rennes, Rennes, France
| | - Martine Bonnaure-Mallet
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
- UMR CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
- CHU Rennes, Rennes, France
| | - Christine Baysse
- EA1254 Microbiologie—Risques Infectieux, University of Rennes1, Rennes, France
- * E-mail:
| |
Collapse
|
19
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
20
|
Klein BA, Chen T, Scott JC, Koenigsberg AL, Duncan MJ, Hu LT. Identification and characterization of a minisatellite contained within a novel miniature inverted-repeat transposable element (MITE) of Porphyromonas gingivalis. Mob DNA 2015; 6:18. [PMID: 26448788 PMCID: PMC4596501 DOI: 10.1186/s13100-015-0049-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Background Repetitive regions of DNA and transposable elements have been found to constitute large percentages of eukaryotic and prokaryotic genomes. Such elements are known to be involved in transcriptional regulation, host-pathogen interactions and genome evolution. Results We identified a minisatellite contained within a miniature inverted-repeat transposable element (MITE) in Porphyromonas gingivalis. The P. gingivalis minisatellite and associated MITE, named ‘BrickBuilt’, comprises a tandemly repeating twenty-three nucleotide DNA sequence lacking spacer regions between repeats, and with flanking ‘leader’ and ‘tail’ subunits that include small inverted-repeat ends. Forms of the BrickBuilt MITE are found 19 times in the genome of P. gingivalis strain ATCC 33277, and also multiple times within the strains W83, TDC60, HG66 and JCVI SC001. BrickBuilt is always located intergenically ranging between 49 and 591 nucleotides from the nearest upstream and downstream coding sequences. Segments of BrickBuilt contain promoter elements with bidirectional transcription capabilities. Conclusions We performed a bioinformatic analysis of BrickBuilt utilizing existing whole genome sequencing, microarray and RNAseq data, as well as performing in vitro promoter probe assays to determine potential roles, mechanisms and regulation of the expression of these elements and their affect on surrounding loci. The multiplicity, localization and limited host range nature of MITEs and MITE-like elements in P. gingivalis suggest that these elements may play an important role in facilitating genome evolution as well as modulating the transcriptional regulatory system. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0049-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian A Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Jodie C Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Andrea L Koenigsberg
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| | - Margaret J Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| |
Collapse
|
21
|
Deletion of a 77-base-pair inverted repeat element alters the synthesis of surface polysaccharides in Porphyromonas gingivalis. J Bacteriol 2015; 197:1208-20. [PMID: 25622614 DOI: 10.1128/jb.02589-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial cell surface glycans, such as capsular polysaccharides and lipopolysaccharides (LPS), influence host recognition and are considered key virulence determinants. The periodontal pathogen Porphyromonas gingivalis is known to display at least three different types of surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown that PG0121 (in strain W83) encodes a DNABII histone-like protein and that this gene is transcriptionally linked to the K-antigen capsule synthesis genes, generating a large ∼19.4-kb transcript (PG0104-PG0121). Furthermore, production of capsule is deficient in a PG0121 mutant strain. In this study, we report on the identification of an antisense RNA (asRNA) molecule located within a 77-bp inverted repeat (77bpIR) element located near the 5' end of the locus. We show that overexpression of this asRNA decreases the amount of capsule produced, indicating that this asRNA can impact capsule synthesis in trans. We also demonstrate that deletion of the 77bpIR element and thereby synthesis of the large 19.4-kb transcript also diminishes, but does not eliminate, capsule synthesis. Surprisingly, LPS structures were also altered by deletion of the 77bpIR element, and reactivity to monoclonal antibodies specific to both O-LPS and A-LPS was eliminated. Additionally, reduced reactivity to these antibodies was also observed in a PG0106 mutant, indicating that this putative glycosyltransferase, which is required for capsule synthesis, is also involved in LPS synthesis in strain W83. We discuss our finding in the context of how DNABII proteins, an antisense RNA molecule, and the 77bpIR element may modulate expression of surface polysaccharides in P. gingivalis. IMPORTANCE The periodontal pathogen Porphyromonas gingivalis displays at least three different types of cell surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown using Northern analysis that the K-antigen capsule locus encodes a large transcript (∼19.4 kb), encompassing a 77-bp inverted repeat (77bpIR) element near the 5' end. Here, we report on the identification of an antisense RNA (asRNA) encoded within the 77bpIR. We show that overexpression of this asRNA or deletion of the element decreases the amount of capsule. LPS structures were also altered by deletion of the 77bpIR, and reactivity to monoclonal antibodies to both O-LPS and A-LPS was eliminated. Our data indicate that the 77bpIR element is involved in modulating both LPS and capsule synthesis in P. gingivalis.
Collapse
|
22
|
Scheres N, Lamont RJ, Crielaard W, Krom BP. LuxS signaling in Porphyromonas gingivalis-host interactions. Anaerobe 2014; 35:3-9. [PMID: 25434960 DOI: 10.1016/j.anaerobe.2014.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/27/2022]
Abstract
Dental plaque is a multispecies biofilm in the oral cavity that significantly influences oral health. The presence of the oral anaerobic pathogen Porphyromonas gingivalis is an important determinant in the development of periodontitis. Direct and indirect interactions between P. gingivalis and the host play a major role in disease development. Transcriptome analysis recently revealed that P. gingivalis gene-expression is regulated by LuxS in both an AI-2-dependent and an AI-2 independent manner. However, little is known about the role of LuxS-signaling in P. gingivalis-host interactions. Here, we investigated the effect of a luxS mutation on the ability of P. gingivalis to induce an inflammatory response in human oral cells in vitro. Primary periodontal ligament (PDL) fibroblasts were challenged with P. gingivalis ΔluxS or the wild-type parental strain and gene-expression of pro-inflammatory mediators IL-1β, IL-6 and MCP-1 was determined by real-time PCR. The ability of P. gingivalis ΔluxS to induce an inflammatory response was severely impaired in PDL-fibroblasts. This phenotype could be restored by providing of LuxS in trans, but not by addition of the AI-2 precursor DPD. A similar phenomenon was observed in a previous transcriptome study showing that expression of PGN_0482 was reduced in the luxS mutant independently of AI-2. We therefore also analyzed the effect of a mutation in PGN_0482, which encodes an immuno-reactive, putative outer-membrane protein. Similar to P. gingivalis ΔluxS, the P. gingivalis Δ0482 mutant had an impaired ability to induce an inflammatory response in PDL fibroblasts. LuxS thus appears to influence the pro-inflammatory responses of host cells to P. gingivalis, likely through regulation of PGN_0482.
Collapse
Affiliation(s)
- Nina Scheres
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU Free University and the University of Amsterdam, Gustav Mahlerlaan 3004, 1081 BT Amsterdam, The Netherlands.
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, United States
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU Free University and the University of Amsterdam, Gustav Mahlerlaan 3004, 1081 BT Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU Free University and the University of Amsterdam, Gustav Mahlerlaan 3004, 1081 BT Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Ciuraszkiewicz J, Śmiga M, Mackiewicz P, Gmiterek A, Bielecki M, Olczak M, Olczak T. Fur homolog regulatesPorphyromonas gingivalisvirulence under low-iron/heme conditions through a complex regulatory network. Mol Oral Microbiol 2014; 29:333-53. [DOI: 10.1111/omi.12077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
- J. Ciuraszkiewicz
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Śmiga
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - P. Mackiewicz
- Department of Genomics; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - A. Gmiterek
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Bielecki
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Olczak
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - T. Olczak
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| |
Collapse
|
24
|
Wright CJ, Wu H, Melander RJ, Melander C, Lamont RJ. Disruption of heterotypic community development by Porphyromonas gingivalis with small molecule inhibitors. Mol Oral Microbiol 2014; 29:185-93. [PMID: 24899524 DOI: 10.1111/omi.12060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
Porphyromonas gingivalis is one of the main etiological organisms in periodontal disease. On oral surfaces P. gingivalis is a component of multispecies biofilm communities and can modify the pathogenic potential of the community as a whole. Accumulation of P. gingivalis in communities is facilitated by interspecies binding and communication with the antecedent colonizer Streptococcus gordonii. In this study we screened a library of small molecules to identify structures that could serve as lead compounds for the development of inhibitors of P. gingivalis community development. Three small molecules were identified that effectively inhibited accumulation of P. gingivalis on a substratum of S. gordonii. The structures of the small molecules are derived from the marine alkaloids oroidin and bromoageliferin and contain a 2-aminoimidazole or 2-aminobenzimidazole moiety. The most active compounds reduced expression of mfa1 and fimA in P. gingivalis, genes encoding the minor and major fimbrial subunits, respectively. These fimbrial adhesins are necessary for P. gingivalis co-adhesion with S. gordonii. These results demonstrate the potential for a small molecular inhibitor-based approach to the prevention of diseases associated with P. gingivalis.
Collapse
Affiliation(s)
- C J Wright
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
25
|
Merritt J, Chen Z, Liu N, Kreth J. Posttranscriptional regulation of oral bacterial adaptive responses. ACTA ACUST UNITED AC 2014; 1:50-58. [PMID: 24695639 DOI: 10.1007/s40496-013-0005-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Within the past 10 years, it has become increasingly evident that posttranscriptional regulation is among the most important mechanisms used by bacteria to modulate gene expression in response to environmental perturbations. Posttranscriptional mechanisms provide a much faster response and lower energy burden compared to most transcription regulatory pathways and they have the unique advantage that they can override existing transcriptional responses once the environment changes. Because of this, virulence factor gene expression is particularly suited for posttranscriptional control, and not surprisingly, an abundance of recent evidence indicates that posttranscriptional regulators are the predominant virulence regulators of human pathogens. Typically, this involves global riboregulators that primarily serve as modulators of virulence gene translation initiation and/or mRNA stability. Surprisingly little has been reported about posttranscriptional regulatory pathways in oral bacteria, but recent results suggest that oral species are equally dependent upon posttranscriptional control of their adaptive genetic responses. In this report, we discuss the major themes in RNA-based regulation of gene expression and review the available literature related to the most commonly studied oral bacterial species.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Microbiology & immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhiyun Chen
- Department of Microbiology & immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nan Liu
- Department of Microbiology & immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jens Kreth
- Department of Microbiology & immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Scott JC, Klein BA, Duran-Pinedo A, Hu L, Duncan MJ. A two-component system regulates hemin acquisition in Porphyromonas gingivalis. PLoS One 2013; 8:e73351. [PMID: 24039921 PMCID: PMC3764172 DOI: 10.1371/journal.pone.0073351] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/17/2013] [Indexed: 01/19/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752), while the cognate response regulator (PGN_0753) remained intact. Microarray-based transcriptional profiling and ChIP-seq assays were carried out with an ATCC 33277 transconjugant containing the functional histidine kinase from strain W83 (PG0719). The data showed that the regulon of this signal transduction system contained genes that were involved in hemin acquisition, including gingipains, at least three transport systems, as well as being self-regulated. Direct regulation by the response regulator was confirmed by electrophoretic mobility shift assays. In addition, the system appears to be activated by hemin and the regulator acts as both an activator and repressor.
Collapse
Affiliation(s)
- Jodie C. Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Brian A. Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Ana Duran-Pinedo
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Linden Hu
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Margaret J. Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
27
|
Hirano T, Beck DAC, Wright CJ, Demuth DR, Hackett M, Lamont RJ. Regulon controlled by the GppX hybrid two component system in Porphyromonas gingivalis. Mol Oral Microbiol 2012. [PMID: 23194602 DOI: 10.1111/omi.12007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The periodontal pathogen Porphyromonas gingivalis experiences a number of environmental conditions in the oral cavity, and must monitor and respond to a variety of environmental cues. However, the organism possesses only five full two-component systems, one of which is the hybrid system GppX. To investigate the regulon controlled by GppX we performed RNA-Seq on a ΔGppX mutant. Fifty-three genes were upregulated and 37 genes were downregulated in the ΔGppX mutant. Pathway analyses revealed no systemic function for GppX under nutrient-replete conditions; however, over 40% of the differentially abundant genes were annotated as encoding hypothetical proteins indicating a novel role for GppX. Abundance of small RNA was, in general, not affected by the absence of GppX. To further define the role of GppX with respect to regulation of a hypothetical protein observed with the greatest significant relative abundance change relative to a wild-type control, PGN_0151, we constructed a series of strains in which the ΔgppX mutation was complemented with a GppX protein containing specific domain and phosphotransfer mutations. The transmembrane domains, the DNA-binding domain and the phosphotransfer residues were all required for regulation of PGN_0151. In addition, binding of GppX to the PGN_0151 promoter regions was confirmed by an electrophoretic mobility shift assay. Both the ΔGppX mutant and a ΔPGN_0151 mutant were deficient in monospecies biofilm formation, suggesting a role for the GppX-PGN_0151 regulon in colonization and survival of the organism.
Collapse
Affiliation(s)
- T Hirano
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|