1
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
2
|
Tucker JS, Cho J, Albrecht TM, Ferrell JL, D’Orazio SEF. Egress of Listeria monocytogenes from Mesenteric Lymph Nodes Depends on Intracellular Replication and Cell-to-Cell Spread. Infect Immun 2023; 91:e0006423. [PMID: 36916918 PMCID: PMC10112146 DOI: 10.1128/iai.00064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
The mesenteric lymph nodes (MLN) function as a barrier to systemic spread for both commensal and pathogenic bacteria in the gut. Listeria monocytogenes, a facultative intracellular foodborne pathogen, readily overcomes this barrier and spreads into the bloodstream, causing life-threatening systemic infections. We show here that intracellular replication protected L. monocytogenes from clearance by monocytes and neutrophils and promoted colonization of the small intestine-draining MLN (sMLN) but was not required for dissemination to the colon-draining MLN (cMLN). Intestinal tissue had enough free lipoate to support LplA2-dependent extracellular growth of L. monocytogenes, but exogenous lipoate in the MLN was severely limited, and so the bacteria could replicate only inside cells, where they used LplA1 to scavenge lipoate from host peptides. When foodborne infection was manipulated to allow ΔlplA1 L. monocytogenes to colonize the MLN to the same extent as wild-type bacteria, the mutant was still never recovered in the spleen or liver of any animal. We found that intracellular replication in the MLN promoted actin-based motility and cell-to-cell spread of L. monocytogenes and that rapid efficient exit from the MLN was actA dependent. We conclude that intracellular replication of L. monocytogenes in intestinal tissues is not essential and serves primarily to amplify bacterial burdens above a critical threshold needed to efficiently colonize the cMLN. In contrast, intracellular replication in the MLN is absolutely required for further systemic spread and serves primarily to promote ActA-mediated cell-to-cell spread.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jooyoung Cho
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Taylor M. Albrecht
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Barreto de Albuquerque J, Altenburger LM, Abe J, von Werdt D, Wissmann S, Martínez Magdaleno J, Francisco D, van Geest G, Ficht X, Iannacone M, Bruggmann R, Mueller C, Stein JV. Microbial uptake in oral mucosa-draining lymph nodes leads to rapid release of cytotoxic CD8 + T cells lacking a gut-homing phenotype. Sci Immunol 2022; 7:eabf1861. [PMID: 35714202 DOI: 10.1126/sciimmunol.abf1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The gastrointestinal (GI) tract constitutes an essential barrier against ingested microbes, including potential pathogens. Although immune reactions are well studied in the lower GI tract, it remains unclear how adaptive immune responses are initiated during microbial challenge of the oral mucosa (OM), the primary site of microbial encounter in the upper GI tract. Here, we identify mandibular lymph nodes (mandLNs) as sentinel lymphoid organs that intercept ingested Listeria monocytogenes (Lm). Oral Lm uptake led to local activation and release of antigen-specific CD8+ T cells that constituted most of the early circulating effector T cell (TEFF) pool. MandLN-primed TEFF disseminated to lymphoid organs, lung, and OM and contributed substantially to rapid elimination of target cells. In contrast to CD8+ TEFF generated in mesenteric LN (MLN) during intragastric infection, mandLN-primed TEFF lacked a gut-seeking phenotype, which correlated with low expression of enzymes required for gut-homing imprinting by mandLN stromal and dendritic cells. Accordingly, mandLN-primed TEFF decreased Lm burden in spleen but not MLN after intestinal infection. Our findings extend the concept of regional specialization of immune responses along the length of the GI tract, with CD8+ TEFF generated in the upper GI tract displaying homing profiles that differ from those imprinted by lymphoid tissue of the lower GI tract.
Collapse
Affiliation(s)
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - David Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Remy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Halsey CR, Glover RC, Thomason MK, Reniere ML. The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis. PLoS Pathog 2021; 17:e1009379. [PMID: 34398937 PMCID: PMC8389512 DOI: 10.1371/journal.ppat.1009379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that in vitro, Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wild type. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ. Listeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that alleviation of Rex repression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.
Collapse
Affiliation(s)
- Cortney R. Halsey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Stratakos AC, Ijaz UZ, Ward P, Linton M, Kelly C, Pinkerton L, Scates P, McBride J, Pet I, Criste A, Stef D, Couto JM, Sloan WT, Dorrell N, Wren BW, Stef L, Gundogdu O, Corcionivoschi N. In vitro and in vivo characterisation of Listeria monocytogenes outbreak isolates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kim BJ, Shusta EV, Doran KS. Past and Current Perspectives in Modeling Bacteria and Blood-Brain Barrier Interactions. Front Microbiol 2019; 10:1336. [PMID: 31263460 PMCID: PMC6585309 DOI: 10.3389/fmicb.2019.01336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial - BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future.
Collapse
Affiliation(s)
- Brandon J Kim
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, United States
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
8
|
Sai K, Parsons C, House JS, Kathariou S, Ninomiya-Tsuji J. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J Cell Biol 2019; 218:1994-2005. [PMID: 30975711 PMCID: PMC6548127 DOI: 10.1083/jcb.201810014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
RIPK3, a key mediator of necroptosis, has been implicated in the host defense against viral infection primary in immune cells. However, gene expression analysis revealed that RIPK3 is abundantly expressed not only in immune organs but also in the gastrointestinal tract, particularly in the small intestine. We found that orally inoculated Listeria monocytogenes, a bacterial foodborne pathogen, efficiently spread and caused systemic infection in Ripk3-deficient mice while almost no dissemination was observed in wild-type mice. Listeria infection activated the RIPK3-MLKL pathway in cultured cells, which resulted in suppression of intracellular replication of Listeria Surprisingly, Listeria infection-induced phosphorylation of MLKL did not result in host cell killing. We found that MLKL directly binds to Listeria and inhibits their replication in the cytosol. Our findings have revealed a novel functional role of the RIPK3-MLKL pathway in nonimmune cell-derived host defense against Listeria invasion, which is mediated through cell death-independent mechanisms.
Collapse
Affiliation(s)
- Kazuhito Sai
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Cameron Parsons
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - Jun Ninomiya-Tsuji
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| |
Collapse
|
9
|
Valente GLC, Acurcio LB, Freitas LPV, Nicoli JR, Silva AM, Souza MR, Penna CFAM. Short communication: In vitro and in vivo probiotic potential of Lactobacillus plantarum B7 and Lactobacillus rhamnosus D1 isolated from Minas artisanal cheese. J Dairy Sci 2019; 102:5957-5961. [PMID: 31128873 DOI: 10.3168/jds.2018-15938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/23/2019] [Indexed: 12/15/2022]
Abstract
Some Lactobacillus strains may contribute to the health of the host when administered in adequate concentrations, demonstrating their probiotic potential. In contrast, Listeria monocytogenes is a foodborne pathogen that can cause enteropathy, meningoencephalitis, abortion, and septicemia. The aim of this survey was to evaluate the in vitro and in vivo probiotic potential of Lactobacillus plantarum B7 and Lactobacillus rhamnosus D1, isolated from Minas artisanal cheese of the Serra da Canastra (Minas Gerais, Brazil), against Lis. monocytogenes. We submitted B7 and D1 to in vitro testing (antibiogram, tolerance to bile salts and artificial gastric fluid, and spot-on-lawn) and in vivo testing (relative weight gain in mice). Both Lactobacillus strains demonstrated in vitro inhibitory activity against Lis. monocytogenes, as well as sensitivity to antimicrobials and resistance to gastric acids and bile salts. In the in vivo assays, mice treated with D1 gained more weight than mice in the other groups. These results indicate that D1 could have higher probiotic potential than B7 because improvements in feed conversion may help animals fight infection.
Collapse
Affiliation(s)
- G L C Valente
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - L B Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - L P V Freitas
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - A M Silva
- Departamento de Engenharia de Alimentos, Universidade Federal de São João del-Rei, Sete Lagoas, 35701-970, Brazil
| | - M R Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - C F A M Penna
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
10
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
11
|
Riaz A, Noureen S, Liqat I, Arshad M, Arshad N. Antilisterial efficacy of Lactobacillus brevis MF179529 from cow: an in vivo evidence. Altern Ther Health Med 2019; 19:37. [PMID: 30709347 PMCID: PMC6359795 DOI: 10.1186/s12906-019-2444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/18/2019] [Indexed: 01/14/2023]
Abstract
Background Listeria monocytogenes is an opportunistic foodborne pathogen that causes human Listeriosis and high mortality particularly in immunocompromised individuals. Pregnant women are more prone to L. monocytogenes infection resulting in abortions. In the present study, antilisterial activity of Lactobacillus brevis (LB) MF179529, a probiotic bacterial strain, was investigated in a murine model. Methods Initially a pilot study was conducted to determine the dose of L. monocytogenes required to cause symptomatic listeriosis. In the main trial, mice were divided into 4 groups. Group I was kept as negative control, group II was exposed to L. monocytogenes and maintained as positive control. Group III was fed with L. brevis only, while group IV received L. brevis for 3 days prior to L. monocytogenes infection. A volume of 200 μl of L. monocytogenes ATCC 19115 and L. brevis MF179529 bacterial suspension corresponding to cell density of 109CFU/ml were given to respective groups by intragastric route. Progress of infection was monitored for 7 days including general health scoring, listeria dispersion in organs, bacterial load in intestine and blood biochemistry were recorded on 3rd, 5th and 7th days post infection (dpi). Results Clinical listeriosis was induced by 109CFU/ml of L. monocytogenes ATCC 19115 in mice. Animals of group IV displayed minor signs of infection. L. brevis supplementation resulted in significant reduction in dispersion and propagation of L. monocytogenes in liver, spleen and intestine. L. brevis MF179529 consumption led to a significant elevation of number of lactic acid bacteria and reduction of total plate count, anaerobic count and coliform population in intestine. Moreover, total leukocyte and neutrophil counts of treated animals were similar to the negative control while positive control group displayed higher number. Safety evaluation of L. brevis was performed by monitoring general health, hematological and serological parameters of L. brevis fed and negative control group (group III and I). No significant difference in feed intake, body temperature, body weight and blood picture could be detected in L. brevis supplemented and control groups. Conclusion Our results indicate ameliorative role of L. brevis in L. monocytogenes infection and suggest that L. brevis could be used for prophylactic measure. Electronic supplementary material The online version of this article (10.1186/s12906-019-2444-5) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Harris J, Paul O, Park SH, White SJ, Budachetri K, McClung DM, Wilson JG, Olivier AK, Thornton JA, Broadway PR, Ricke SC, Donaldson JR. Oxygen deprivation influences the survival of Listeria monocytogenes in gerbils. Transl Anim Sci 2018; 3:102-112. [PMID: 30627705 PMCID: PMC6310367 DOI: 10.1093/tas/txy110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/27/2022] Open
Abstract
Listeria monocytogenes is a facultative anaerobic foodborne pathogen capable of surviving harsh environments. Recent work has indicated that anaerobic conditions increase the resistance capability of certain strains to environmental stressors. The goal of the study was to conduct a preliminary study to determine whether exposure to anaerobic conditions prior to infection increases the ability to survive in vivo. Gerbils were inoculated with one of five doses of the L. monocytogenes strain F2365 by oral gavage: phosphate-buffered saline (control), 5 × 106 colony forming units aerobic culture (low aerobic), 5 × 108 aerobic culture (high aerobic), 5 × 106 anaerobic culture (low anaerobic), or 5 × 108 anaerobic culture (high anaerobic) dose of F2365. Gerbils inoculated with a high aerobic or anaerobic dose exhibited significant weight loss. Gerbils administered either the low or high anaerobic dose had at least 3 log10 of L. monocytogenes present in fecal samples, which contrasted with gerbils that received the low aerobic dose. Animals that received the high anaerobic dose had a significant increase in bacterial loads within the liver. Histologic examination of the L. monocytogenes positive livers exhibited locally extensive areas of hepatocellular necrosis, though the extent of this damage differed between treatment groups. Microbial community analysis of the cecum from gerbils infected with L. monocytogenes indicated that the abundance of Bacteroidales and Clostridiales increased and there was a decrease in the abundance of Spirochaetales. This study suggests that anaerobic conditions alter the localization pattern of L. monocytogenes within the gastrointestinal tract. These findings could relate to how different populations are more susceptible to listeriosis, as oxygen availability may differ within the gastrointestinal tract.
Collapse
Affiliation(s)
- Jillian Harris
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS
| | - Oindrila Paul
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - Si Hong Park
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR
| | - Sally J White
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - Khemraj Budachetri
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - Daniel M McClung
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS
| | - Jessica G Wilson
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS
| | | | - Steven C Ricke
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR
| | - Janet R Donaldson
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS
| |
Collapse
|
13
|
Barreto de Albuquerque J, Silva Dos Santos D, Stein JV, de Meis J. Oral Versus Intragastric Inoculation: Similar Pathways of Trypanosoma cruzi Experimental Infection? From Target Tissues, Parasite Evasion, and Immune Response. Front Immunol 2018; 9:1734. [PMID: 30100907 PMCID: PMC6072848 DOI: 10.3389/fimmu.2018.01734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
Currently, oral infection is the most frequent transmission mechanism of Chagas disease in Brazil and others Latin American countries. This transmission pathway presents increased mortality rate in the first 2 weeks, which is higher than the calculated mortality after the biting of infected insect vectors. Thus, the oral route of Trypanosoma cruzi infection, and the consequences in the host must be taken into account when thinking on the mechanisms underlying the natural history of the disease. Distinct routes of parasite entry may differentially affect immune circuits, stimulating regional immune responses that impact on the overall profile of the host protective immunity. Experimental studies related to oral infection usually comprise inoculation in the mouth (oral infection, OI) or gavage (gastrointestinal infection, GI), being often considered as similar routes of infection. Hence, establishing a relationship between the inoculation site (OI or GI) with disease progression and the mounting of T. cruzi-specific regional immune responses is an important issue to be considered. Here, we provide a discussion on studies performed in OI and GI in experimental models of acute infections, including T. cruzi infection.
Collapse
Affiliation(s)
| | - Danielle Silva Dos Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Batan D, Braselmann E, Minson M, Nguyen DMT, Cossart P, Palmer AE. A Multicolor Split-Fluorescent Protein Approach to Visualize Listeria Protein Secretion in Infection. Biophys J 2018; 115:251-262. [PMID: 29653838 PMCID: PMC6050711 DOI: 10.1016/j.bpj.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is an intracellular food-borne pathogen that has evolved to enter mammalian host cells, survive within them, spread from cell to cell, and disseminate throughout the body. A series of secreted virulence proteins from Listeria are responsible for manipulation of host-cell defense mechanisms and adaptation to the intracellular lifestyle. Identifying when and where these virulence proteins are located in live cells over the course of Listeria infection can provide valuable information on the roles these proteins play in defining the host-pathogen interface. These dynamics and protein levels may vary from cell to cell, as bacterial infection is a heterogeneous process both temporally and spatially. No assay to visualize virulence proteins over time in infection with Listeria or other Gram-positive bacteria has been developed. Therefore, we adapted a live, long-term tagging system to visualize a model Listeria protein by fluorescence microscopy on a single-cell level in infection. This system leverages split-fluorescent proteins, in which the last strand of a fluorescent protein (a 16-amino-acid peptide) is genetically fused to the virulence protein of interest. The remainder of the fluorescent protein is produced in the mammalian host cell. Both individual components are nonfluorescent and will bind together and reconstitute fluorescence upon virulence-protein secretion into the host cell. We demonstrate accumulation and distribution within the host cell of the model virulence protein InlC in infection over time. A modular expression platform for InlC visualization was developed. We visualized InlC by tagging it with red and green split-fluorescent proteins and compared usage of a strong constitutive promoter versus the endogenous promoter for InlC production. This split-fluorescent protein approach is versatile and may be used to investigate other Listeria virulence proteins for unique mechanistic insights in infection progression.
Collapse
Affiliation(s)
- Dilara Batan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Esther Braselmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Michael Minson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | | | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France; Inserm U604, Paris, France; French National Institute for Agricultural Research, Unité Sous-Contrat 2020, Paris, France
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado.
| |
Collapse
|
15
|
Vertical Transmission of Listeria monocytogenes: Probing the Balance between Protection from Pathogens and Fetal Tolerance. Pathogens 2018; 7:pathogens7020052. [PMID: 29799503 PMCID: PMC6027155 DOI: 10.3390/pathogens7020052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Protection of the developing fetus from pathogens is one of the many critical roles of the placenta. Listeria monocytogenes is one of a select number of pathogens that can cross the placental barrier and cause significant harm to the fetus, leading to spontaneous abortion, stillbirth, preterm labor, and disseminated neonate infection despite antibiotic treatment. Such severe outcomes serve to highlight the importance of understanding how L. monocytogenes mediates infiltration of the placental barrier. Here, we review what is currently known regarding vertical transmission of L. monocytogenes as a result of cell culture and animal models of infection. In vitro cell culture and organ models have been useful for the identification of L. monocytogenes virulence factors that contribute to placental invasion. Examples include members of the Internalin family of bacterial surface proteins such as Interalin (Inl)A, InlB, and InlP that promote invasion of cells at the maternal-fetal interface. A number of animal models have been used to interrogate L. monocytogenes vertical transmission, including mice, guinea pigs, gerbils, and non-human primates; each of these models has advantages while still not providing a comprehensive understanding of L. monocytogenes invasion of the human placenta and/or fetus. These models do, however, allow for the molecular investigation of the balance between fetal tolerance and immune protection from L. monocytogenes during pregnancy.
Collapse
|
16
|
Animal and Human Tissue Models of Vertical Listeria monocytogenes Transmission and Implications for Other Pregnancy-Associated Infections. Infect Immun 2018; 86:IAI.00801-17. [PMID: 29483290 DOI: 10.1128/iai.00801-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intrauterine infections lead to serious complications for mother and fetus, including preterm birth, maternal and fetal death, and neurological sequelae in the surviving offspring. Improving maternal and child heath is a global priority. Yet, the development of strategies to prevent and treat pregnancy-related diseases has lagged behind progress made in other medical fields. One of the challenges is finding tractable model systems that replicate the human maternal-fetal interface. Animal models offer the ability to study pathogenesis and host defenses in vivo However, the anatomy of the maternal-fetal interface is highly divergent across species. While many tools are available to study host responses in the pregnant mouse model, other animals have placentas that are more similar to that of humans. Here we describe new developments in animal and human tissue models to investigate the pathogenesis of listeriosis at the maternal-fetal interface. We highlight gaps in existing knowledge and make recommendations on how they can be filled.
Collapse
|
17
|
Abstract
Human listeriosis results from the ingestion of foods contaminated with Listeria monocytogenes (Lm). About 1600 listeriosis cases are reported every year in the USA with >95% hospitalization and 15-20% death. The proportions of persons with listeriosis hospitalized and who die are very similar in Europe with slightly higher rates in Scandinavian countries. The occurrence of disease requires adaptation, survival, and usually growth of Lm in foods before consumption by members of the susceptible population. Despite concerted efforts by the food safety community, the disease incidence has not changed significantly since 2001 and remains higher than the Healthy People 2020 target of 0.2 cases per 100,000 individuals. In recent years, human listeriosis cases have been reported to involve non-typical foods, e.g. celery, cantaloupe, caramel apple, frozen vegetables and ice cream. In some outbreaks, a few infected individuals were considered outside the realm of the standard vulnerable population group. Our recent work with the outbreak associated with ice cream samples, indicated that a low-level contamination in a food that does not support growth can cause listeriosis in highly susceptible populations. Separately, using a combination of polymerase chain reaction (PCR)-based serotyping and whole genome sequencing (WGS)-based analyses; we have discovered that a genetic variant of the serotype 4b strain, called 4bV, was responsible for 3-4 recent outbreaks in the USA. Three of the four products associated with these outbreaks were grown in a small geographical region of the USA while the fourth was never linked to a specific grower, but rather a processing facility. These 4bV strains contain a 6.3kb DNA fragment normally associated with lineage II Lm strains. The significance of this DNA fragment in the serotype 4b background is currently being investigated. This article reviews current listeriosis outbreaks with an emphasis on the expansions in food niche, case demography and genotypes of Lm. The discussion raises important questions about Lm adaptation in different foods and environments and the role of certain genotypes in such adaptation and disease outcome.
Collapse
|
18
|
Pitts MG, D'Orazio SEF. A Comparison of Oral and Intravenous Mouse Models of Listeriosis. Pathogens 2018; 7:pathogens7010013. [PMID: 29361677 PMCID: PMC5874739 DOI: 10.3390/pathogens7010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well as the development of a foodborne route of transmission has reignited interest in studying oral models of listeriosis. In this review, we analyze previously published reports to highlight both the similarities and differences in tissue colonization and host response to infection using either oral or i.v. inoculation.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| |
Collapse
|
19
|
Route of Injection Affects the Impact of InlB Internalin Domain Variants on Severity of Listeria monocytogenes Infection in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2101575. [PMID: 29445733 PMCID: PMC5763066 DOI: 10.1155/2017/2101575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022]
Abstract
The facultative intracellular pathogen Listeria monocytogenes causes a severe food-borne infection in humans and animals. L. monocytogenes invasion factor InlB interacts with the tyrosine kinase c-Met via the N-terminal internalin domain. Previously, distinct variants of the InlB internalin domain (idInlB) have been described in L. monocytogenes field isolates. Three variants were used to restore full-length InlB expression in the L. monocytogenes strain EGDeΔinlB. Obtained isogenic L. monocytogenes strains were tested in the invasion assay and intravenous, intraperitoneal, and intragastric models of infection in mice. All idInlBs were functional, restored InlB activity as an invasion factor, and improved invasion of the parental strain EGDeΔinlB into human kidney HEK23 cells. Meanwhile, distinct idInlBs provided different mortality rates and bacterial loads in internal organs. When recombinant strains were compared, the variant designated idInlB14 decreased severity of disease caused by intravenous and intraperitoneal bacterial administration, whereas this variant improved intestine colonization and stimulated intragastric infection. Obtained results demonstrated that naturally occurring idInlBs differed in their impact on severity of L. monocytogenes infection in mice in dependence on the infection route.
Collapse
|
20
|
Kommineni S, Kristich CJ, Salzman NH. Harnessing bacteriocin biology as targeted therapy in the GI tract. Gut Microbes 2016; 7:512-517. [PMID: 27624536 PMCID: PMC5153615 DOI: 10.1080/19490976.2016.1233089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 02/03/2023] Open
Abstract
Recently, our laboratory demonstrated that bacteriocins produced by commensal enterococci provide an advantage in niche maintenance in the highly competitive environment of the gastrointestinal (GI) tract. Bacterial production of bacteriocins is a conserved defense strategy to help establish an ecological niche. Bacteriocin-encoding genes in enterococci are often carried on mobile genetic elements, including conjugative plasmids, enabling the transfer of such traits to other community members in a shared niche. Use of a novel mouse model for enterococcal colonization of the GI tract allowed us to investigate enterococcal dynamics and the role of enterococcal bacteriocins in the mouse GI tract. We examined the role of bacteriocin-21, carried on the pPD1 plasmid, in enterococcal colonization of the gut. We discovered that Enterococcus faecalis (EF) harboring pPD1 effectively colonizes the GI tract by using Bac-21 to eliminate its competition. In our study, we also present evidence for active conjugation in the GI tract, a strategy EF uses to enhance the number of bacteriocin producers in a given niche and eliminate bacteriocin-susceptible populations. Using an engineered strain of EF that is capable of producing Bac-21 but impaired in its conjugation ability, we were able to reduce pre-existing colonization by vancomycin-resistant enterococci in the mouse gut. Thus, our results suggest a novel therapeutic strategy to de-colonize antibiotic-resistant enterococci from the GI tract of patients and thereby prevent the emergence of resistant enterococcal infections that are otherwise difficult, or impossible, to treat.
Collapse
Affiliation(s)
- Sushma Kommineni
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Christopher J. Kristich
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Nita H. Salzman
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| |
Collapse
|
21
|
Rahman SA, Munther D, Fazil A, Smith B, Wu J. Unraveling the dose-response puzzle of L. monocytogenes: A mechanistic approach. Infect Dis Model 2016; 1:101-114. [PMID: 29928724 PMCID: PMC5963320 DOI: 10.1016/j.idm.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/14/2016] [Accepted: 09/21/2016] [Indexed: 12/27/2022] Open
Abstract
Food-borne disease outbreaks caused by Listeria monocytogenes continue to impose heavy burdens on public health in North America and globally. To explore the threat L. monocytogenes presents to the elderly, pregnant woman and immuno-compromised individuals, many studies have focused on in-host infection mechanisms and risk evaluation in terms of dose-response outcomes. However, the connection of these two foci has received little attention, leaving risk prediction with an insufficient mechanistic basis. Consequently, there is a critical need to quantifiably link in-host infection pathways with the dose-response paradigm. To better understand these relationships, we propose a new mathematical model to describe the gastro-intestinal pathway of L. monocytogenes within the host. The model dynamics are shown to be sensitive to inoculation doses and exhibit bi-stability phenomena. Applying the model to guinea pigs, we show how it provides useful tools to identify key parameters and to inform critical values of these parameters that are pivotal in risk evaluation. Our preliminary analysis shows that the effect of gastro-environmental stress, the role of commensal microbiota and immune cells are critical for successful infection of L. monocytogenes and for dictating the shape of the dose-response curves.
Collapse
Affiliation(s)
- S.M. Ashrafur Rahman
- Laboratory for Industrial and Applied Mathematics, Centre for Disease Modelling, Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| | - Daniel Munther
- Department of Mathematics, Cleveland State University, Cleveland, OH 44115, United States
| | - Aamir Fazil
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON N1G 5B2, Canada
| | - Ben Smith
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON N1G 5B2, Canada
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics, Centre for Disease Modelling, Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
22
|
Pitts MG, Myers-Morales T, D'Orazio SEF. Type I IFN Does Not Promote Susceptibility to Foodborne Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2016; 196:3109-16. [PMID: 26895837 DOI: 10.4049/jimmunol.1502192] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 01/01/2023]
Abstract
Type I IFN (IFN-α/β) is thought to enhance growth of the foodborne intracellular pathogen Listeria monocytogenes by promoting mechanisms that dampen innate immunity to infection. However, the type I IFN response has been studied primarily using methods that bypass the stomach and, therefore, fail to replicate the natural course of L. monocytogenes infection. In this study, we compared i.v. and foodborne transmission of L. monocytogenes in mice lacking the common type I IFN receptor (IFNAR1(-/-)). Contrary to what was observed using i.v. infection, IFNAR1(-/-) and wild-type mice had similar bacterial burdens in the liver and spleen following foodborne infection. Splenocytes from wild-type mice infected i.v. produced significantly more IFN-β than did those infected by the foodborne route. Consequently, the immunosuppressive effects of type I IFN signaling, which included T cell death, increased IL-10 secretion, and repression of neutrophil recruitment to the spleen, were all observed following i.v. but not foodborne transmission of L. monocytogenes. Type I IFN was also previously shown to cause a loss of responsiveness to IFN-γ through downregulation of the IFN-γ receptor α-chain on macrophages and dendritic cells. However, we detected a decrease in surface expression of IFN-γ receptor α-chain even in the absence of IFN-α/β signaling, suggesting that in vivo, this infection-induced phenotype is not type I IFN-dependent. These results highlight the importance of using the natural route of infection for studies of host-pathogen interactions and suggest that the detrimental effects of IFN-α/β signaling on the innate immune response to L. monocytogenes may be an artifact of the i.v. infection model.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536
| | - Tanya Myers-Morales
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
23
|
Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections. Nat Protoc 2015; 10:1155-64. [PMID: 26134955 DOI: 10.1038/nprot.2015.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial infections are a global health problem, particularly as microbes are continually developing resistance to antimicrobial treatments. An effective and reliable method for testing the virulence of different microbial pathogens is therefore a useful research tool. This protocol describes how the chicken embryo can be used as a trustworthy, inexpensive, ethically desirable and quickly accessible model to assess the virulence of the human bacterial pathogen Listeria monocytogenes, which can also be extended to other microbial pathogens. We provide a step-by-step protocol and figures and videos detailing the method, including egg handling, infection strategies, pathogenicity screening and isolation of infected organs. From the start of incubation of the fertilized eggs, the protocol takes <4 weeks to complete, with the infection part taking only 3 d. We discuss the appropriate controls to use and potential adjustments needed for adapting the protocol for other microbial pathogens.
Collapse
|