1
|
Hrdy J, Vasickova P, Nesvadbova M, Novotny J, Mati T, Kralik P. MOL-PCR and xMAP Technology: A Multiplex System for Fast Detection of Food- and Waterborne Viruses. J Mol Diagn 2021; 23:765-776. [PMID: 33864939 DOI: 10.1016/j.jmoldx.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/26/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses are common causes of food- and waterborne diseases worldwide. Conventional identification of these agents is based on cultivation, antigen detection, electron microscopy, or real-time PCR. Because recent technological advancements in detection methods are focused on fast and robust analysis, a rapid multiplexing technology, which can detect a broad spectrum of pathogenic viruses connected to food or water contamination, was utilized. A new semiquantitative magnetic bead-based multiplex system has been designed for simultaneous detection of several targets in one reaction. The system includes adenoviruses 40/41 (AdV), rotavirus A (RVA), norovirus (NoV), hepatitis E virus (HEV), hepatitis A virus (HAV), and a target for external control of the system. To evaluate the detection system, interlaboratory ring tests were performed in four independent laboratories. Analytical specificity of the tool was tested on a cohort of pathogenic agents and biological samples with quantitative PCR as a reference method. Limit of detection (analytical sensitivity) of 5 × 100 (AdV, HEV, and RVA) and 5 × 101 (HAV and NoV) genome equivalents per reaction was reached. This robust, senstivie, and rapid multiplexing technology may be used to routinely monitor and manage viruses in food and water to prevent food and waterborne diseases.
Collapse
Affiliation(s)
- Jakub Hrdy
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Petra Vasickova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Michaela Nesvadbova
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jiri Novotny
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Tomas Mati
- Military Veterinary Institute, Hlucin, Czech Republic
| | - Petr Kralik
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Jelinkova P, Hrdy J, Markova J, Dresler J, Pajer P, Pavlis O, Branich P, Borilova G, Reichelova M, Babak V, Reslova N, Kralik P. Development and Inter-Laboratory Validation of Diagnostics Panel for Detection of Biothreat Bacteria Based on MOL-PCR Assay. Microorganisms 2020; 9:microorganisms9010038. [PMID: 33374468 PMCID: PMC7823616 DOI: 10.3390/microorganisms9010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Early detection of biohazardous bacteria that can be misused as biological weapons is one of the most important measures to prevent the spread and outbreak of biological warfare. For this reason, many instrument platforms need to be introduced into operation in the field of biological warfare detection. Therefore the purpose of this study is to establish a new detection panel for biothreat bacteria (Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Brucella spp.) and confirm it by collaborative validation by using a multiplex oligonucleotide ligation followed by polymerase chain reaction and hybridization to microspheres by MagPix detection platform (MOL-PCR). Appropriate specific sequences in bacterial DNA were selected and tested to assemble the detection panel, and MOLigo probes (short specific oligonucleotides) were designed to show no cross-reactivity when tested between bacteria and to decrease the background signal measurement on the MagPix platform. During testing, sensitivity was assessed for all target bacteria using serially diluted DNA and was determined to be at least 0.5 ng/µL. For use as a diagnostic kit and easier handling, the storage stability of ligation premixes (MOLigo probe mixes) was tested. This highly multiplex method can be used for rapid screening to prevent outbreaks arising from the use of bacterial strains for bioterrorism, because time of analysis take under 4 h.
Collapse
Affiliation(s)
- Pavlina Jelinkova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
- Correspondence:
| | - Jakub Hrdy
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jirina Markova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic; (J.D.); (P.P.); (O.P.)
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic; (J.D.); (P.P.); (O.P.)
| | - Oto Pavlis
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic; (J.D.); (P.P.); (O.P.)
| | - Pavel Branich
- Military Veterinary Institute, Opavska 29, 748 01 Hlucin, Czech Republic;
| | - Gabriela Borilova
- Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (G.B.); (P.K.)
| | - Marketa Reichelova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
- Collection of Animal Pathogenic Microorganisms, Department of Bacteriology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Vladimir Babak
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
| | - Nikol Reslova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Petr Kralik
- Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (G.B.); (P.K.)
| |
Collapse
|
3
|
Single-Cell-Based Digital PCR Detection and Association of Shiga Toxin-Producing Escherichia coli Serogroups and Major Virulence Genes. J Clin Microbiol 2020; 58:JCM.01684-19. [PMID: 31896667 DOI: 10.1128/jcm.01684-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli serogroups O157, O26, O45, O103, O111, O121, and O145, when carrying major virulence genes, the Shiga toxin genes stx 1 and stx 2 and the intimin gene eae, are important foodborne pathogens. They are referred to as the "top 7" Shiga toxin-producing E. coli (STEC) serogroups and were declared by the USDA as adulterants to human health. Since top 7 serogroup-positive cattle feces and ground beef can also contain nonadulterant E. coli strains, regular PCR cannot confirm whether the virulence genes are carried by adulterant or nonadulterant E. coli serogroups. Thus, traditional gold-standard STEC detection requires bacterial isolation and characterization, which are not compatible with high-throughput settings and often take a week to obtain a definitive result. In this study, we demonstrated that the partition-based multichannel digital PCR (dPCR) system can be used to detect and associate the E. coli serogroup-specific gene with major virulence genes and developed a single-cell-based dPCR approach for rapid (within 1 day) and accurate detection and confirmation of major STEC serogroups in high-throughput settings. Major virulence genes carried by each of the top 7 STEC serogroups were detected by dPCR with appropriately diluted intact bacterial cells from pure cultures, culture-spiked cattle feces, and culture-spiked ground beef. Furthermore, from 100 randomly collected, naturally shed cattle fecal samples, 3 O103 strains carrying eae and 2 O45 strains carrying stx 1 were identified by this dPCR assay and verified by the traditional isolation method. This novel and rapid dPCR assay is a culture-independent, high-throughput, accurate, and sensitive method for STEC detection and confirmation.
Collapse
|
4
|
Carroll KJ, Harvey-Vince L, Jenkins C, Mohan K, Balasegaram S. The epidemiology of Shiga toxin-producing Escherichia coli infections in the South East of England: November 2013-March 2017 and significance for clinical and public health. J Med Microbiol 2019; 68:930-939. [PMID: 30994441 DOI: 10.1099/jmm.0.000970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study describes the epidemiology of Shiga toxin-producing Escherichia coli (STEC) infections in a population in the South East of England. METHODS From 1 November 2013 to 31 March 2017 participating diagnostic laboratories reported Shiga toxin gene (stx) positive real-time PCR results to local public health teams. Stx positive faecal samples/isolates were referred to the Gastrointestinal Bacteria Reference Unit (GBRU) for confirmation by culture and typing by whole genome sequencing (WGS). Key clinical information was collected by public health teams.Results/Key findings. Altogether, 548 faecal specimens (420 were non-travel associated) were stx positive locally, 535 were submitted to the GBRU. STEC were isolated from 42 %, confirmed by stx PCR in 21 % and 37 % were PCR negative. The most common non-travel associated STEC serogroups were O157, O26, O146 and O91. The annualized incidence of confirmed STEC infections (PCR or culture) was 5.8 per 100 000. The ratio of O157 to non-O157 STEC serogroups was 1:7. The annualized incidence of non-O157 haemolytic uraemic syndrome-associated Escherichia coli (HUSEC) strains was 0.4 per 100 000. Bloody diarrhoea was reported by 58 % of cases infected with E. coli O157, 33 % of cases infected with non-O157 HUSEC strains and 12 % of other lower risk non-O157 strains. Overall, 76 % of non-O157 HUSEC isolates possessed the eae virulence gene. CONCLUSIONS HUSEC including serogroup O157 were uncommon and more likely to cause bloody diarrhoea than other STEC. The routine use of stx PCR testing can influence clinical management. Understanding the local epidemiology facilitates a proportionate public health response to STEC, based on clinical and microbiological characteristics including stx subtype(s).
Collapse
Affiliation(s)
- Kevin J Carroll
- 1 PHE South East, Surrey and Sussex HPT, Parkside, Chart Way, Horsham RH12 1XA, UK
| | - Lisa Harvey-Vince
- 1 PHE South East, Surrey and Sussex HPT, Parkside, Chart Way, Horsham RH12 1XA, UK
| | - Claire Jenkins
- 2 Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5HT, UK
| | - Keerthi Mohan
- 3 PHE South East, Thames Valley HPT, Chilton, Oxon, OX11 0RQ, UK
| | - Sooria Balasegaram
- 4 Field Services, National Infection Service, Public Health England, London, UK
| |
Collapse
|
5
|
Stromberg ZR, Redweik GAJ, Mellata M. Detection, Prevalence, and Pathogenicity of Non-O157 Shiga Toxin-Producing Escherichia coli from Cattle Hides and Carcasses. Foodborne Pathog Dis 2019; 15:119-131. [PMID: 29638166 DOI: 10.1089/fpd.2017.2401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli (STEC) and harbor these bacteria in the intestinal tract. The prevalence, concentration, and STEC serogroup isolated in cattle varies between individuals. Hide removal at slaughter serves as a major point of carcass contamination and ultimately beef products. Certain STEC serogroups, such as O26, O45, O103, O111, O121, O145, and O157, containing the intestinal adherence factor intimin, pose a large economic burden to food producers because of testing and recalls. Human infection with STEC can cause illnesses ranging from diarrhea to hemorrhagic colitis and hemolytic uremic syndrome, and is commonly acquired through ingestion of contaminated foods, often beef products. Previously, most studies focused on O157 STEC, but there is growing recognition of the importance of non-O157 STEC serogroups. This review summarizes detection methods, prevalence, and methods for prediction of pathogenicity of non-O157 STEC from cattle hides and carcasses. A synthesis of procedures is outlined for general non-O157 STEC and targeted detection of specific STEC serogroups. Standardization of sample collection and processing procedures would allow for more robust comparisons among studies. Presence of non-O157 STEC isolated from cattle hides and carcasses and specific factors, such as point of sample collection and season, are summarized. Also, factors that might influence STEC survival on these surfaces, such as the microbial population on hides and microbial adherence genes, are raised as topics for future investigation. Finally, this review gives an overview on studies that have used genetic and cell-based methods to identify specific phenotypes of non-O157 STEC strains isolated from cattle to assess their risk to human health.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| |
Collapse
|
6
|
Reslova N, Huvarova V, Hrdy J, Kasny M, Kralik P. A novel perspective on MOL-PCR optimization and MAGPIX analysis of in-house multiplex foodborne pathogens detection assay. Sci Rep 2019; 9:2719. [PMID: 30804418 PMCID: PMC6389906 DOI: 10.1038/s41598-019-40035-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a rapid method for simultaneous detection of multiple molecular markers within a single reaction. MOL-PCR is increasingly employed in microbial detection assays, where its ability to facilitate identification and further characterization via simple analysis is of great benefit and significantly simplifies routine diagnostics. When adapted to microsphere suspension arrays on a MAGPIX reader, MOL-PCR has the potential to outperform standard nucleic acid-based diagnostic assays. This study represents the guideline towards in-house MOL-PCR assay optimization using the example of foodborne pathogens (bacteria and parasites) with an emphasis on the appropriate choice of crucial parameters. The optimized protocol focused on specific sequence detection utilizes the fluorescent reporter BODIPY-TMRX and self-coupled magnetic microspheres and allows for a smooth and brisk workflow which should serve as a guide for the development of MOL-PCR assays intended for pathogen detection.
Collapse
Affiliation(s)
- Nikol Reslova
- Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic. .,Faculty of Science, Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Veronika Huvarova
- Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jakub Hrdy
- Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic.,Faculty of Science, Department of Experimental Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Martin Kasny
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Petr Kralik
- Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic
| |
Collapse
|
7
|
Woods TA, Mendez HM, Ortega S, Shi X, Marx D, Bai J, Moxley RA, Nagaraja TG, Graves SW, Deshpande A. Development of 11-Plex MOL-PCR Assay for the Rapid Screening of Samples for Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2016; 6:92. [PMID: 27630828 PMCID: PMC5005322 DOI: 10.3389/fcimb.2016.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) are a serious threat to the health, with approximately half of the STEC related food-borne illnesses attributable to contaminated beef. We developed an assay that was able to screen samples for several important STEC associated serogroups (O26, O45, O103, O104, O111, O121, O145, O157) and three major virulence factors (eae, stx1, stx2) in a rapid and multiplexed format using the Multiplex oligonucleotide ligation-PCR (MOL-PCR) assay chemistry. This assay detected unique STEC DNA signatures and is meant to be used on samples from various sources related to beef production, providing a multiplex and high-throughput complement to the multiplex PCR assays currently in use. Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a nucleic acid-based assay chemistry that relies on flow cytometry/image cytometry and multiplex microsphere arrays for the detection of nucleic acid-based signatures present in target agents. The STEC MOL-PCR assay provided greater than 90% analytical specificity across all sequence markers designed when tested against panels of DNA samples that represent different STEC serogroups and toxin gene profiles. This paper describes the development of the 11-plex assay and the results of its validation. This highly multiplexed, but more importantly dynamic and adaptable screening assay allows inclusion of additional signatures as they are identified in relation to public health. As the impact of STEC associated illness on public health is explored additional information on classification will be needed on single samples; thus, this assay can serve as the backbone for a complex screening system.
Collapse
Affiliation(s)
- Travis A Woods
- Department of Chemical and Biological Engineering, University of New Mexico Albuquerque, NM, USA
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New MexicoAlbuquerque, NM, USA; The New Mexico ConsortiumLos Alamos, NM, USA
| | - Sandy Ortega
- Translational Biomedical Sciences, University of Rochester Rochester, NY, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - David Marx
- Department of Statistics, University of Nebraska-Lincoln Lincoln, NE, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Rodney A Moxley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln Lincoln, NE, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Steven W Graves
- Department of Chemical and Biological Engineering, University of New Mexico Albuquerque, NM, USA
| | - Alina Deshpande
- Los Alamos National Laboratory, Analytics, Intelligence and Technology Division Los Alamos, NM, USA
| |
Collapse
|