1
|
Zeng L, Walker AR, Burne RA, Taylor ZA. Glucose Phosphotransferase System Modulates Pyruvate Metabolism, Bacterial Fitness, and Microbial Ecology in Oral Streptococci. J Bacteriol 2023; 205:e0035222. [PMID: 36468868 PMCID: PMC9879115 DOI: 10.1128/jb.00352-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Spontaneous mutants with defects in the primary glucose phosphotransferase permease (manLMNO) of Streptococcus sanguinis SK36 showed enhanced fitness at low pH. Transcriptomics and metabolomics with a manL deletion mutant (SK36/manL) revealed redirection of pyruvate to production of acetate and formate, rather than lactate. These observations were consistent with measurements of decreased lactic acid accumulation and increased excretion of acetate, formate, pyruvate, and H2O2. Genes showing increased expression in SK36/manL included those encoding carbohydrate transporters, extracellular glycosidases, intracellular polysaccharide metabolism, and arginine deiminase and pathways for metabolism of acetoin, ethanolamine, ascorbate, and formate, along with genes required for membrane biosynthesis and adhesion. Streptococcus mutans UA159 persisted much better in biofilm cocultures with SK36/manL than with SK36, an effect that was further enhanced by culturing the biofilms anaerobically but dampened by adding arginine to the medium. We posited that the enhanced persistence of S. mutans with SK36/manL was in part due to excess excretion of pyruvate by the latter, as addition of pyruvate to S. mutans-S. sanguinis cocultures increased the proportions of UA159 in the biofilms. Reducing the buffer capacity or increasing the concentration of glucose benefited UA159 when cocultured with SK36, but not with SK36/manL, likely due to the altered metabolism and enhanced acid tolerance of the mutant. When manL was deleted in S. mutans or Streptococcus gordonii, the mutants presented altered fitness characteristics. Our study demonstrated that phosphotransferase system (PTS)-dependent modulation of central metabolism can profoundly affect streptococcal fitness and metabolic interactions, revealing another dimension in commensal-pathogen relationships influencing dental caries development. IMPORTANCE Dental caries is underpinned by a dysbiotic microbiome and increased acid production. As beneficial bacteria that can antagonize oral pathobionts, oral streptococci such as S. sanguinis and S. gordonii can ferment many carbohydrates, despite their relative sensitivity to low pH. We characterized the molecular basis for why mutants of glucose transporter ManLMNO of S. sanguinis showed enhanced production of hydrogen peroxide and ammonia and improved persistence under acidic conditions. A metabolic shift involving more than 300 genes required for carbohydrate transport, energy production, and envelope biogenesis was observed. Significantly, manL mutants engineered in three different oral streptococci displayed altered capacities for acid production and interspecies antagonism, highlighting the potential for targeting the glucose-PTS to modulate the pathogenicity of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Zachary A. Taylor
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Hasan MK, Dhungel BA, Govind R. Characterization of an operon required for growth on cellobiose in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001079. [PMID: 34410904 PMCID: PMC8489589 DOI: 10.1099/mic.0.001079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Cellobiose metabolism is linked to the virulence properties in numerous bacterial pathogens. Here, we characterized a putative cellobiose PTS operon of Clostridiodes difficile to investigate the role of cellobiose metabolism in C. difficile pathogenesis. Our gene knockout experiments demonstrated that the putative cellobiose operon enables uptake of cellobiose into C. difficile and allows growth when cellobiose is provided as the sole carbon source in minimal medium. Additionally, using reporter gene fusion assays and DNA pulldown experiments, we show that its transcription is regulated by CelR, a novel transcriptional repressor protein, which directly binds to the upstream region of the cellobiose operon to control its expression. We have also identified cellobiose metabolism to play a significant role in C. difficile physiology as observed by the reduction of sporulation efficiency when cellobiose uptake was compromised in the mutant strain. In corroboration to in vitro study findings, our in vivo hamster challenge experiment showed a significant reduction of pathogenicity by the cellobiose mutant strain in both the primary and the recurrent infection model - substantiating the role of cellobiose metabolism in C. difficile pathogenesis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
3
|
Hirschmann S, Gómez-Mejia A, Mäder U, Karsunke J, Driesch D, Rohde M, Häussler S, Burchhardt G, Hammerschmidt S. The Two-Component System 09 Regulates Pneumococcal Carbohydrate Metabolism and Capsule Expression. Microorganisms 2021; 9:microorganisms9030468. [PMID: 33668344 PMCID: PMC7996280 DOI: 10.3390/microorganisms9030468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae two-component regulatory systems (TCSs) are important systems that perceive and respond to various host environmental stimuli. In this study, we have explored the role of TCS09 on gene expression and phenotypic alterations in S. pneumoniae D39. Our comparative transcriptomic analyses identified 67 differently expressed genes in total. Among those, agaR and the aga operon involved in galactose metabolism showed the highest changes. Intriguingly, the encapsulated and nonencapsulated hk09-mutants showed significant growth defects under nutrient-defined conditions, in particular with galactose as a carbon source. Phenotypic analyses revealed alterations in the morphology of the nonencapsulated hk09- and tcs09-mutants, whereas the encapsulated hk09- and tcs09-mutants produced higher amounts of capsule. Interestingly, the encapsulated D39∆hk09 showed only the opaque colony morphology, while the D39∆rr09- and D39∆tcs09-mutants had a higher proportion of transparent variants. The phenotypic variations of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 are in accordance with their higher numbers of outer membrane vesicles, higher sensitivity against Triton X-100 induced autolysis, and lower resistance against oxidative stress. In conclusion, these results indicate the importance of TCS09 for pneumococcal metabolic fitness and resistance against oxidative stress by regulating the carbohydrate metabolism and thereby, most likely indirectly, the cell wall integrity and amount of capsular polysaccharide.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julia Karsunke
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
- Correspondence:
| |
Collapse
|
4
|
Wang J, Li JW, Li J, Huang Y, Wang S, Zhang JR. Regulation of pneumococcal epigenetic and colony phases by multiple two-component regulatory systems. PLoS Pathog 2020; 16:e1008417. [PMID: 32187228 PMCID: PMC7105139 DOI: 10.1371/journal.ppat.1008417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/30/2020] [Accepted: 02/19/2020] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae is well known for phase variation between opaque (O) and transparent (T) colonies within clonal populations. While the O variant is specialized in invasive infection (with a thicker capsule and higher resistance to host clearance), the T counterpart possesses a relatively thinner capsule and thereby higher airway adherence and colonization. Our previous study found that phase variation is caused by reversible switches of the "opaque ON-or-OFF" methylomes or methylation patterns of pneumococcal genome, which is dominantly driven by the PsrA-catalyzed inversions of the DNA methyltransferase hsdS genes. This study revealed that switch frequency between the O and T variants is regulated by five transcriptional response regulators (rr) of the two-component systems (TCSs). The mutants of rr06, rr08, rr09, rr11 and rr14 produced significantly fewer O and more T colonies. Further mutagenesis revealed that RR06, RR08, RR09 and RR11 enrich the O variant by modulating the directions of the PsrA-catalyzed inversion reactions. In contrast, the impact of RR14 (RitR) on phase variation is independent of PsrA. Consistently, SMRT sequencing uncovered significantly diminished "opaque ON" methylome in the mutants of rr06, rr08, rr09 and rr11 but not that of rr14. Lastly, the phosphorylated form of RR11 was shown to activate the transcription of comW and two sugar utilization systems that are necessary for maintenance of the "opaque ON" genotype and phenotype. This work has thus uncovered multiple novel mechanisms that balance pneumococcal epigenetic status and physiology.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Wen Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Li Z, Xiang Z, Zeng J, Li Y, Li J. A GntR Family Transcription Factor in Streptococcus mutans Regulates Biofilm Formation and Expression of Multiple Sugar Transporter Genes. Front Microbiol 2019; 9:3224. [PMID: 30692967 PMCID: PMC6340165 DOI: 10.3389/fmicb.2018.03224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
GntR family transcription factors have been implicated in the regulation of carbohydrate transport and metabolism in many bacteria. However, the function of this transcription factor family is poorly studied in Streptococcus mutans, which is a commensal bacterium in the human oral cavity and a well-known cariogenic pathogen. One of the most important virulence traits of S. mutans is its ability to transport and metabolize carbohydrates. In this study, we identified a GntR transcription factor in S. mutans named StsR (Sugar Transporter Systems Regulator). The deletion of the stsR gene in S. mutans caused a decrease in both the formation of biofilm and the production of extracellular polysaccharides (EPS) at early stage. Global gene expression profiling revealed that the expression levels of 188 genes were changed in the stsR mutant, which could be clustered with the sugar PTS and ABC transporters. Furthermore, StsR protein was purified and its conserved DNA binding motif was determined using electrophoretic mobility shift assays (EMSA) and DNase I footprinting assays. Collectively, the results of this research indicate that StsR is an important transcription factor in S. mutans that regulates the expression of sugar transporter genes, production of EPS and formation of biofilm.
Collapse
Affiliation(s)
- Zongbo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenting Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|