1
|
Liu S, Zhong Q, Zhu W, Zhang H, Ren J, Zhang L, Cui S, Yang X. Low-level laser selectively inhibiting colorectal cancer cell metabolic activity and inducing apoptosis for delaying the development of intestinal cancer. Photochem Photobiol Sci 2023:10.1007/s43630-023-00409-1. [PMID: 37071386 DOI: 10.1007/s43630-023-00409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
Low-level laser irradiation (LLLI) is a novel approach that shows promise for the treatment of colorectal cancer (CRC). However, the molecular mechanisms underlying its biochemical effects and gene expression remain unclear. Here, LLLI (632.8 nm) was used to treat CRC RKO cells and normal small intestinal NCM460 cells. LLLI showed a significant dose- and time-dependent effect on cell viability, in which a single dose of irradiation at 15 J/cm2 selectively inhibited the growth of RKO cells but largely unaffected the activity of NCM460 cells. And then, LLLI produced an internal response, effectively reducing the level of H2O2 in tumor cells, downregulating the mitochondrial membrane potential, and improving the efficiency of apoptosis in CRC, but no internal response was observed in NCM460 cells under the same conditions. Furthermore, the expression of several important genes in the classical WNT pathway was significantly downregulated, and the pathway was inactivated after LLLI intervention, thereby inhibiting tumor cell growth. Simultaneously, TNF-α was effectively activated to stimulate the caspase family members of the death effector to initiate apoptosis led by the extrinsic pathway. LLLI successfully achieves tumor cell normalization while delivering a potent anticancer effect, expected to be a novel therapeutic modality for CRC.
Collapse
Affiliation(s)
- Shaojie Liu
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| | - Qiguang Zhong
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Hanshuo Zhang
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jingqing Ren
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Lihua Zhang
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Shuliang Cui
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- School of BioSciences, University of Melboume, Victoria, Australia
| | - Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Chi K, Zou Y, Liu C, Dong Z, Liu Y, Guo N. Staphylococcal enterotoxin A induces DNA damage in hepatocytes and liver tissues. Toxicon 2022; 221:106980. [DOI: 10.1016/j.toxicon.2022.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
3
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Sokolov DI, Kozyreva AR, Markova KL, Mikhailova VA, Korenevskii AV, Miliutina YP, Balabas OA, Chepanov SV, Selkov SA. Microvesicles produced by monocytes affect the phenotype and functions of endothelial cells. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
β-Lactam Antibiotics Enhance the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via SarA-Controlled Lipoprotein-Like Cluster Expression. mBio 2019; 10:mBio.00880-19. [PMID: 31186320 PMCID: PMC6561022 DOI: 10.1128/mbio.00880-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
β-Lactam antibiotics are widely applied to treat infectious diseases. However, certain poor disease outcomes caused by β-lactams remain poorly understood. In this study, we have identified a cluster of lipoprotein-like genes (lpl, sa2275–sa2273) that is upregulated in the major clinically prevalent MRSA clones in response to subinhibitory concentrations of β-lactam induction. The major highlight of this work is that β-lactams stimulate the expression of SarA, which directly binds to the lpl cluster promoter region and upregulates lpl expression in MRSA. Deletion of lpl significantly decreases proinflammatory cytokine levels in vitro and in vivo. The β-lactam-induced Lpls enhance host inflammatory responses by triggering the Toll-like-receptor-2-mediated expressions of interleukin-6 and tumor necrosis factor alpha. The β-lactam-induced Lpls are important virulence factors that enhance MRSA pathogenicity. These data elucidate that subinhibitory concentrations of β-lactams can exacerbate the outcomes of MRSA infection through induction of lpl controlled by the global regulator SarA. Methicillin-resistant Staphylococcus aureus (MRSA) resists nearly all β-lactam antibiotics that have a bactericidal activity. However, whether the empirically used β-lactams enhance MRSA pathogenicity in vivo remains unclear. In this study, we showed that a cluster of lipoprotein-like genes (lpl, sa2275 to sa2273 [sa2275–sa2273]) was upregulated in MRSA in response to subinhibitory concentrations of β-lactam induction. The increasing expression of lpl by β-lactams was directly controlled by the global regulator SarA. The β-lactam-induced Lpls stimulated the production of interleukin-6 and tumor necrosis factor alpha in RAW 264.7 macrophages. The lpl deletion mutants (N315Δlpl and USA300Δlpl) decreased the proinflammatory cytokine levels in vitro and in vivo. Purified lipidated SA2275-his proteins could trigger a Toll-like-receptor-2 (TLR2)-dependent immune response in primary mouse bone marrow-derived macrophages and C57BL/6 mice. The bacterial loads of N315Δlpl in the mouse kidney were lower than those of the wild-type N315. The β-lactam-treated MRSA exacerbated cutaneous infections in both BALB/c and C57BL/6 mice, presenting increased lesion size; destroyed skin structure; and easily promoted abscess formation compared with those of the untreated MRSA. However, the size of abscesses caused by the β-lactam-treated N315 was negligibly different from those caused by the untreated N315Δlpl in C57BL/6 TLR2−/− mice. Our findings suggest that β-lactams must be used carefully because they might aggravate the outcome of MRSA infection compared to inaction in treatment.
Collapse
|
6
|
Seiti Yamada Yoshikawa F, Feitosa de Lima J, Notomi Sato M, Álefe Leuzzi Ramos Y, Aoki V, Leao Orfali R. Exploring the Role of Staphylococcus Aureus Toxins in Atopic Dermatitis. Toxins (Basel) 2019; 11:E321. [PMID: 31195639 PMCID: PMC6628437 DOI: 10.3390/toxins11060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense pruritus and xerosis. AD pathogenesis is multifactorial, involving genetic, environmental, and immunological factors, including the participation of Staphylococcus aureus. This bacterium colonizes up to 30-100% of AD skin and its virulence factors are responsible for its pathogenicity and antimicrobial survival. This is a concise review of S. aureus superantigen-activated signaling pathways, highlighting their involvement in AD pathogenesis, with an emphasis on skin barrier disruption, innate and adaptive immunity dysfunction, and microbiome alterations. A better understanding of the combined mechanisms of AD pathogenesis may enhance the development of future targeted therapies for this complex disease.
Collapse
Affiliation(s)
- Fabio Seiti Yamada Yoshikawa
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Josenilson Feitosa de Lima
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Yasmin Álefe Leuzzi Ramos
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Valeria Aoki
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Raquel Leao Orfali
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| |
Collapse
|
7
|
Blicharz L, Rudnicka L, Samochocki Z. Staphylococcus aureus: an underestimated factor in the pathogenesis of atopic dermatitis? Postepy Dermatol Alergol 2019; 36:11-17. [PMID: 30858773 PMCID: PMC6409874 DOI: 10.5114/ada.2019.82821] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis is a common, recurrent pruritic dermatosis with a complex pathogenesis. It has been associated with disordered patterns of immunological response and impaired epithelial barrier integrity. These features predispose the patients to robust colonization of skin lesions by Staphylococcus aureus. Virulence factors of S. aureus (e.g. superantigens, α- and δ-toxin, protein A) have been shown to exacerbate and perpetuate the course of atopic dermatitis. Novel therapeutic options with potential for restoring natural microbiome composition are being elaborated and may enter clinical practice in the future.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
8
|
Zhang S, Li Z, Huang W. Interleukin-4 Enhances the Sensitivity of Human Monocytes to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Through Upregulation of Death Receptor 4. J Interferon Cytokine Res 2018; 38:186-194. [PMID: 29638207 DOI: 10.1089/jir.2017.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-4 is generally thought to promote tumor cell growth and inhibit apoptosis. However, its role in characteristics of monocytic leukemia cells was rarely reported. In this study, we assessed the role of IL-4 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity of human monocytes. After incubation with IL-4 for 24 h, death receptor 4 (DR4) was significantly increased without downregulation of TRAIL decoy receptors and antiapoptotic proteins in THP-1 monocytes, and human primary monocytes and U-937 cells also exhibited increased TRAIL-induced apoptosis compared with control. Enhancement of TRAIL-mediated apoptosis by IL-4 was blocked by anti-DR4-neutralizing antibodies. Both upregulation of DR4 and enhancement of TRAIL-mediated apoptosis by IL-4 could be blocked by inhibitors of Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphoinositol 3-kinase (PI3K)/Akt, and extracellular signal-regulated kinase to varying degrees. Thus, our data demonstrated a novel effect on TRAIL sensitivity on monocytes and monocytic leukemia cells of IL-4 and suggested that it may be necessary to reconsider the impact of current therapies against IL-4, JAK/STAT, and PI3K/Akt pathways with regard to TRAIL sensitivity.
Collapse
Affiliation(s)
- Shujun Zhang
- 1 Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Zhuan Li
- 2 Liver Center, Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Wenxiang Huang
- 1 Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
9
|
Zhang X, Hu X, Rao X. Apoptosis induced by Staphylococcus aureus toxins. Microbiol Res 2017; 205:19-24. [DOI: 10.1016/j.micres.2017.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|