1
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Green LR, Issa R, Albaldi F, Urwin L, Thompson R, Khalid H, Turner CE, Ciani B, Partridge LJ, Monk PN. CD9 co-operation with syndecan-1 is required for a major staphylococcal adhesion pathway. mBio 2023; 14:e0148223. [PMID: 37486132 PMCID: PMC10470606 DOI: 10.1128/mbio.01482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Epithelial colonization is a critical first step in bacterial pathogenesis. Staphylococcus aureus can utilize several host factors to associate with cells, including α5β1 integrin and heparan sulfate proteoglycans, such as the syndecans. Here, we demonstrate that a partner protein of both integrins and syndecans, the host membrane adapter protein tetraspanin CD9, is essential for syndecan-mediated staphylococcal adhesion. Fibronectin is also essential in this process, while integrins are only critical for post-adhesion entry into human epithelial cells. Treatment of epithelial cells with CD9-derived peptide or heparin caused significant reductions in staphylococcal adherence, dependent on both CD9 and syndecan-1. Exogenous fibronectin caused a CD9-dependent increase in staphylococcal adhesion, whereas blockade of β1 integrins did not affect adhesion but did reduce the subsequent internalization of adhered bacteria. CD9 disruption or deletion increased β1 integrin-mediated internalization, suggesting that CD9 coordinates sequential staphylococcal adhesion and internalization. CD9 controls staphylococcal adhesion through syndecan-1, using a mechanism that likely requires CD9-mediated syndecan organization to correctly display fibronectin at the host cell surface. We propose that CD9-derived peptides or heparin analogs could be developed as anti-adhesion treatments to inhibit the initial stages of staphylococcal pathogenesis. IMPORTANCE Staphylococcus aureus infection is a significant cause of disease and morbidity. Staphylococci utilize multiple adhesion pathways to associate with epithelial cells, including interactions with proteoglycans or β1 integrins through a fibronectin bridge. Interference with another host protein, tetraspanin CD9, halves staphylococcal adherence to epithelial cells, although CD9 does not interact directly with bacteria. Here, we define the role of CD9 in staphylococcal adherence and uptake, observing that CD9 coordinates syndecan-1, fibronectin, and β1 integrins to allow efficient staphylococcal infection. Two treatments that disrupt this action are effective and may provide an alternative to antibiotics. We provide insights into the mechanisms that underlie staphylococcal infection of host cells, linking two known adhesion pathways together through CD9 for the first time.
Collapse
Affiliation(s)
- Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Rahaf Issa
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Fawzyah Albaldi
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Ruth Thompson
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Henna Khalid
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Claire E. Turner
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Ciani
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Lynda J. Partridge
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| |
Collapse
|
3
|
Thippabhotla S, Liu B, Podgorny A, Yooseph S, Yang Y, Zhang J, Zhong C. Integrated de novo gene prediction and peptide assembly of metagenomic sequencing data. NAR Genom Bioinform 2023; 5:lqad023. [PMID: 36915411 PMCID: PMC10006731 DOI: 10.1093/nargab/lqad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 03/16/2023] Open
Abstract
Metagenomics is the study of all genomic content contained in given microbial communities. Metagenomic functional analysis aims to quantify protein families and reconstruct metabolic pathways from the metagenome. It plays a central role in understanding the interaction between the microbial community and its host or environment. De novo functional analysis, which allows the discovery of novel protein families, remains challenging for high-complexity communities. There are currently three main approaches for recovering novel genes or proteins: de novo nucleotide assembly, gene calling and peptide assembly. Unfortunately, their information dependency has been overlooked, and each has been formulated as an independent problem. In this work, we develop a sophisticated workflow called integrated Metagenomic Protein Predictor (iMPP), which leverages the information dependencies for better de novo functional analysis. iMPP contains three novel modules: a hybrid assembly graph generation module, a graph-based gene calling module, and a peptide assembly-based refinement module. iMPP significantly improved the existing gene calling sensitivity on unassembled metagenomic reads, achieving a 92-97% recall rate at a high precision level (>85%). iMPP further allowed for more sensitive and accurate peptide assembly, recovering more reference proteins and delivering more hypothetical protein sequences. The high performance of iMPP can provide a more comprehensive and unbiased view of the microbial communities under investigation. iMPP is freely available from https://github.com/Sirisha-t/iMPP.
Collapse
Affiliation(s)
- Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
| | - Ben Liu
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
| | - Adam Podgorny
- Center for Computational Biology, The University of Kansas, Lawrence, KS 66045, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Youngik Yang
- National Marine Biodiversity Institute of Korea, 101-75, Jangsan-ro, Janghang-eup, Seochun-gun, Chungchungnam-do, 33662, South Korea
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Cancer Biology, University of Kansas Cancer Center; Kansas City, KS 66160, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
5
|
Shao Y, Duan X, Zhao X, Lv Z, Li C. Global N 6-methyladenosine methylation analysis reveals the positive correlation between m 6A modification and mRNA abundance during Apostichopus japonicus disease development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104434. [PMID: 35562078 DOI: 10.1016/j.dci.2022.104434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A), the most abundant epitranscriptomic modification in eukaryotic messenger RNA (mRNA), plays important roles in regulation of gene expression for fundamental biological processes and diverse physiological functions, including combating with pathogen infection. Here, we were first profile transcriptome-wide m6A sequencing in four stages of skin ulceration syndrome-diseased Apostichopus japonicus following Vibrio splendidus infection, including Control (healthy), Early (small ulcer), Later (extensive ulcer), and Resistant (no ulcer) groups. Our results revealed that three experimental groups were all extensively methylated by m6A and the proportion of the m6A modified genes were also significantly increased to 28.90% (Early), 27.97% (Later), and 29.98% (Resistant) when compared with Control group (15.15%), indicating m6A modification could be induced by V. splendidus infection. Intriguingly, we discovered a positive correlation between the m6A methylation level and mRNA abundance, indicating a positive regulatory role of m6A in sea cucumber gene expression during V. splendidus infection. Moreover, genes with specific and differentially expressed m6A methylation in Later group were both enriched in cell adhesion, while Early and Resistant groups were both mainly involved in DNA conformation change and chromosome organization when compared with Control, suggesting the higher-methylated m6A might serve as "conformational marker" and associated to the initiation of related anti-disease genes transcription in order to improve disease resistance of sea cucumber. Subsequently, we selected the pivotal genes enriched in cell adhesion pathway and found that the IggFc-binding protein (FcGBP) and Fibrocystin-L both had higher levels of m6A methylation and higher level of mRNA expressions in Later group. Conversely, Fibrinogen C domain-containing protein 1 (F1BCD1) gene presented as an antibacterial role in sea cucumber and showed higher mRNA expression and higher m6A methylation in Resistant group and lower mRNA level in Later group. The levels of m6A methylation and mRNA abundance of FcGBP and F1BCD1 genes indicates disease occurrence or disease resistant were also verified by MeRIP-qPCR. Overall, our study presents the first comprehensive characterize of dynamic m6A methylation modification in the different stages of disease in sea cucumber. These data provide an invaluable resource for future studies of function and biological significance of m6A in mRNA in marine invertebrates.
Collapse
Affiliation(s)
- Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuemei Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
6
|
Ordiales H, Alcalde I, Vázquez F, Merayo-Lloves J, Quirós LM, Cueto CM. Cell Surface Glycosaminoglycans as Receptors for Adhesion of Candida spp. to Corneal Cells. Pol J Microbiol 2022; 71:55-62. [PMID: 35635172 PMCID: PMC9152916 DOI: 10.33073/pjm-2022-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
The most common causal agents of fungal keratitis are yeasts of the Candida genus. Adhesion constitutes the first stage of pathogenesis. Previous studies have shown that glycosaminoglycans from the corneal cell surface play an essential role in bacterial keratitis, although little is known about their role in fungal infections. The objective of this work is to analyze the role that glycosaminoglycans (GAGs) play in the adhesion of fungi of the Candida genus to corneal epithelial cells. The participation of GAGs in the adhesion of fungi was studied through the specific inhibition of the synthesis of these molecules by enzymatic digestion using specific lyases and the silencing of various genes involved in heparan sulfate sulfation. The results seem to indicate that glycosaminoglycans act to some extent as receptors for this fungus, although there are differences between fungal species. Treatment with inhibitors partially reduced the adherence of fungal species. Digestion of cell surface heparan sulfate further reduced the adherence of Candida albicans and Candida glabrata compared to chondroitin sulfate, indicating that the binding is preferentially mediated by heparan sulfate. Degradation of both heparan sulfate and chondroitin sulfate produced similar effects on the adherence of Candida parapsilosis. However, adhesion of C. albicans hyphae is not dependent on GAGs, suggesting the expression of other adhesins and the recognition of other receptors present in corneal cells. Our results open the door to new strategies for stopping the adhesion of pathogenic fungi, and their subsequent invasion of the cornea; thus, reducing the probability of the keratitis development.
Collapse
Affiliation(s)
- Helena Ordiales
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Departamento de Biología functional, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Fernando Vázquez
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Departamento de Biología functional, Universidad de Oviedo, Oviedo, Spain
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Luis M. Quirós
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Departamento de Biología functional, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Carla Martín Cueto
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
- Brill Pharma, Barcelona, Spain
| |
Collapse
|
7
|
Martín C, Ordiales H, Vázquez F, Pevida M, Rodríguez D, Merayo J, Vázquez F, García B, Quirós LM. Bacteria associated with acne use glycosaminoglycans as cell adhesion receptors and promote changes in the expression of the genes involved in their biosynthesis. BMC Microbiol 2022; 22:65. [PMID: 35219289 PMCID: PMC8881830 DOI: 10.1186/s12866-022-02477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Background Cell surface glycosaminoglycans (GAGs) participate in many physiological and pathological processes, including infections and inflammatory response. Acne is a common chronic inflammatory skin disorder that affects the pilosebaceous unit and has a multifactorial etiology, including bacterial colonization of the hair follicle. This study aimed to investigate the participation of GAG in the adhesion of Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis to keratinocytes and fibroblasts of the skin by competition experiments and cell surface removal using specific liases. The alteration in the transcription of the genes responsible for the synthesis of GAG induced by the adhesion of these bacteria was also analyzed by qRT-PCR. Results GAGs are involved in bacterial adherence to skin cells, especially fibroblasts, where chondroitin sulfate displayed the higher effect. Bacterial adherence produced different alterations in the transcription of the genes responsible for GAG structures. P. acnes induced mostly changes in keratinocytes, while S. epidermidis was the main cause of alterations in fibroblasts. These variations in gene expression affected all the stages in the biosynthesis of the main species of GAGs, heparan and chondroitin sulphate. Conclusions GAGs species are involved in the adhesion of acne-related bacteria to skin cells in a differential manner depending on each microorganism and cellular type, although other receptors seem to exist. Bacterial adherence led to variations on gene expression in skin cells affecting GAG chains structure what, consequently, should alter their interactions with different ligands, affecting the development of acne disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02477-2.
Collapse
|
8
|
Urwin L, Okurowska K, Crowther G, Roy S, Garg P, Karunakaran E, MacNeil S, Partridge LJ, Green LR, Monk PN. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9:E2450. [PMID: 33182687 PMCID: PMC7696224 DOI: 10.3390/cells9112450] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.
Collapse
Affiliation(s)
- Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Grace Crowther
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sheila MacNeil
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lynda J. Partridge
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| |
Collapse
|
9
|
Martín C, Fernández-Vega I, Suárez JE, Quirós LM. Adherence of Lactobacillus salivarius to HeLa Cells Promotes Changes in the Expression of the Genes Involved in Biosynthesis of Their Ligands. Front Immunol 2020; 10:3019. [PMID: 31998306 PMCID: PMC6962182 DOI: 10.3389/fimmu.2019.03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The attachment of a variety of Lactobacilli to the mucosal surfaces is accomplished through the interaction of OppA, a superficial bacterial protein also involved in oligopeptide internalization, and the glycosaminoglycan moiety of the proteoglycans that form the epithelial cell glycocalyx. Upon the interaction of the vaginal isolate Lactobacillus salivarius Lv72 and HeLa cell cultures, the expression of oppA increased more than 50-fold over the following 30 min, with the overexpression enduring, albeit at a lower rate, for up to 24 h. Conversely, transcriptional analysis of 62 genes involved in proteoglycan biosynthesis revealed generalized repression of genes whose products catalyze different steps of the whole pathway. This led to decreases in the superficial concentration of heparan (60%) and chondroitin sulfate (40%), although the molecular masses of these glycosaminoglycans were higher than those of the control cultures. Despite this lowering in the concentration of the receptor, attachment of the Lactobacilli proceeded, and completely overlaid the underlying HeLa cell culture.
Collapse
Affiliation(s)
- Carla Martín
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan E Suárez
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
| | - Luis M Quirós
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
10
|
A Genome-Wide Knockout Screen in Human Macrophages Identified Host Factors Modulating Salmonella Infection. mBio 2019; 10:mBio.02169-19. [PMID: 31594818 PMCID: PMC6786873 DOI: 10.1128/mbio.02169-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A genome-scale CRISPR knockout library screen of THP-1 human macrophages was performed to identify loss-of-function mutations conferring resistance to Salmonella uptake. The screen identified 183 candidate genes, from which 14 representative genes involved in actin dynamics (ACTR3, ARPC4, CAPZB, TOR3A, CYFIP2, CTTN, and NHLRC2), glycosaminoglycan metabolism (B3GNT1), receptor signaling (PDGFB and CD27), lipid raft formation (CLTCL1), calcium transport (ATP2A2 and ITPR3), and cholesterol metabolism (HMGCR) were analyzed further. For some of these pathways, known chemical inhibitors could replicate the Salmonella resistance phenotype, indicating their potential as targets for host-directed therapy. The screen indicated a role for the relatively uncharacterized gene NHLRC2 in both Salmonella invasion and macrophage differentiation. Upon differentiation, NHLRC2 mutant macrophages were hyperinflammatory and did not exhibit characteristics typical of macrophages, including atypical morphology and inability to interact and phagocytose bacteria/particles. Immunoprecipitation confirmed an interaction of NHLRC2 with FRYL, EIF2AK2, and KLHL13.IMPORTANCE Salmonella exploits macrophages to gain access to the lymphatic system and bloodstream to lead to local and potentially systemic infections. With an increasing number of antibiotic-resistant isolates identified in humans, Salmonella infections have become major threats to public health. Therefore, there is an urgent need to identify alternative approaches to anti-infective therapy, including host-directed therapies. In this study, we used a simple genome-wide screen to identify 183 candidate host factors in macrophages that can confer resistance to Salmonella infection. These factors may be potential therapeutic targets against Salmonella infections.
Collapse
|
11
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
12
|
Martin C, Lozano-Iturbe V, Girón RM, Vazquez-Espinosa E, Rodriguez D, Merayo-Lloves J, Vazquez F, Quirós LM, García B. Glycosaminoglycans are differentially involved in bacterial binding to healthy and cystic fibrosis lung cells. J Cyst Fibros 2018; 18:e19-e25. [PMID: 30415947 DOI: 10.1016/j.jcf.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glycosaminoglycans (GAGs) are essential in many infections, including recurrent bacterial respiratory infections, the main cause of mortality in cystic fibrosis (CF) patients. METHODS Using a cellular model of healthy and CF lung epithelium, a comparative transcriptomic study of GAG encoding genes was performed using qRT-PCR, and their differential involvement in the adhesion of bacterial pathogens analyzed by enzymatic degradation and binding competition experiments. RESULTS Various alterations in gene expression in CF cells were found which affect GAG structures and seem to influence bacterial adherence to lung epithelium cells. Heparan sulfate appears to be the most important GAG species involved in bacterial binding. CONCLUSIONS Adherence to lung epithelial cells of some of the main pathogens involved in CF is dependent on GAGs, and the expression of these polysaccharides is altered in CF cells, suggesting it could play an essential role in the development of infectious pathology.
Collapse
Affiliation(s)
- Carla Martin
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Víctor Lozano-Iturbe
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Rosa M Girón
- Department of Pneumology, Hospital La Princesa, Institute for Health Research (IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Emma Vazquez-Espinosa
- Department of Pneumology, Hospital La Princesa, Institute for Health Research (IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - David Rodriguez
- Department of Biochemistry, University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| | - Fernando Vazquez
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain; Department of Microbiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Luis M Quirós
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain.
| | - Beatriz García
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
13
|
Abstract
Syndecan-1 (Sdc1) is a major cell surface heparan sulfate (HS) proteoglycan of epithelial cells, a cell type targeted by many bacterial pathogens early in their pathogenesis. Loss of Sdc1 in mice is a gain-of-function mutation that significantly decreases the susceptibility to several bacterial infections, suggesting that subversion of Sdc1 is an important virulence strategy. HS glycosaminoglycan (GAG) chains of cell surface Sdc1 promote bacterial pathogenesis by facilitating the attachment of bacteria to host cells. Engagement of cell surface Sdc1 HS chains by bacterial adhesins transmits signal through the highly conserved Sdc1 cytoplasmic domain, which can lead to uptake of intracellular bacterial pathogens. On the other hand, several bacteria that do not require Sdc1 for their attachment and invasion stimulate Sdc1 shedding and exploit the capacity of Sdc1 ectodomain HS GAGs to disarm innate defense mechanisms to evade immune clearance. Recent data suggest that select HS sulfate motifs, and not the overall charge of HS, are important in the inhibition of innate immune mechanisms. Here, we discuss several examples of Sdc1 subversion in bacterial infections.
Collapse
|
14
|
Abstract
Glycosylation is a major form of enzymatic modification of organic molecules responsible for multiple biological processes in an organism. The biosynthesis of glycans is controlled by a series of glycosyltransferases, glycosidases and glycan-modifying enzymes that collectively assemble and process monosaccharide moieties into a diverse array of structures. Many studies have provided insight into various pathways of glycosylation at the ocular surface, such as those related to the biosynthesis of mucin-type O-glycans and N-glycans on proteins, but many others still remain largely unknown. This review provides an overview of the different classes of glycans described at the ocular surface focusing on their biosynthetic pathways and biological relevance. A precise understanding of these pathways under physiological and pathological conditions could help identify biomarkers and novel targets for therapeutic intervention.
Collapse
|
15
|
Rajas O, Quirós LM, Ortega M, Vazquez-Espinosa E, Merayo-Lloves J, Vazquez F, García B. Glycosaminoglycans are involved in bacterial adherence to lung cells. BMC Infect Dis 2017; 17:319. [PMID: 28464847 PMCID: PMC5414233 DOI: 10.1186/s12879-017-2418-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Lower respiratory infections are among the top ten causes of death worldwide. Since pathogen to cell adhesion is a crucial step in the infection progress, blocking the interaction between eukaryotic receptors and bacterial ligands may enable the pathogenesis process to be stopped. Cell surface glycosaminoglycans (GAGs) are known to be mediators in the adhesion of diverse bacteria to different cell types, making it of interest to examine their involvement in the attachment of various pathogenic bacteria to lung cells, including epithelial cells and fibroblasts. Methods The function of cell surface GAGs in bacterial adhesion was studied by reducing their levels through inhibiting their biosynthesis and enzymatic degradation, as well as in binding competition experiments with various species of GAGs. The participation of the different bacterial adhesins in attachment was evaluated through competition with two peptides, both containing consensus heparin binding sequences. Blocking inhibition assays using anti-syndecans and the enzymatic removal of glypicans were conducted to test their involvement in bacterial adhesion. The importance of the fine structure of GAGs in the interaction with pathogens was investigated in competition experiments with specifically desulfated heparins. Results The binding of all bacteria tested decreased when GAG levels in cell surface of both lung cells were diminished. Competition experiments with different types of GAGs showed that heparan sulfate chains are the main species involved. Blocking or removal of cell surface proteoglycans evidenced that syndecans play a more important role than glypicans. The binding was partially inhibited by peptides including heparin binding sequences. Desulfated heparins also reduced bacterial adhesion to different extents depending on the bacterium and the sulfated residue, especially in fibroblast cells. Conclusions Taken together, these data demonstrate that the GAG chains of the cell surface are involved in the adhesion of bacterial adhesins to lung cells. Heparan sulfate seems to be the main species implicated, and binding is dependent on the sulfation pattern of the molecule. These data could facilitate the development of new anti-infective strategies, enabling the development of new procedures for blocking the interaction between pathogens and lung cells more effectively.
Collapse
Affiliation(s)
- Olga Rajas
- Pneumology Service, Hospital La Princesa, Institute for Health Research (IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Luis M Quirós
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Mara Ortega
- Biobank Coordinator, Institute for Health Research (IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Emma Vazquez-Espinosa
- Pneumology Service, Hospital La Princesa, Institute for Health Research (IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Jesús Merayo-Lloves
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain
| | - Fernando Vazquez
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Department of Microbiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz García
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, Oviedo, Spain.
| |
Collapse
|