1
|
Fujii C, Wang D. Novel insights into virus-host interactions using the model organism C. elegans. Adv Virus Res 2023; 115:135-158. [PMID: 37173064 DOI: 10.1016/bs.aivir.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Viruses continue to pose a public health threat raising the need for effective management strategies. Currently existing antiviral therapeutics are often specific to only a single viral species, and resistance to the therapeutic can often arise, and therefore new therapeutics are needed. The C. elegans-Orsay virus system offers a powerful platform for studying RNA virus-host interactions that could ultimately lead to novel targets for antiviral therapy. The relative simplicity of C. elegans, the well-established experimental tools, and its extensive evolutionary conservation of genes and pathways with mammals are key features of this model. Orsay virus, a bisegmented positive sense RNA virus, is a natural pathogen of C. elegans. Orsay virus infection can be studied in a multicellular organismal context, overcoming some of the limitations inherent to tissue culture-based systems. Moreover, compared to mice, the rapid generation time of C. elegans enables robust and facile forward genetics. This review aims to summarize studies that have laid the foundation for the C. elegans-Orsay virus experimental system, experimental tools, and key examples of C. elegans host factors that impact Orsay virus infection that have evolutionarily conserved function in mammalian virus infection.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
2
|
Pujhari S, Brustolin M, Heu CC, Smithwick R, Larrosa M, Hafenstein S, Rasgon JL. Characterization of Mayaro virus (strain BeAn343102) biology in vertebrate and invertebrate cellular backgrounds. J Gen Virol 2022; 103:001794. [PMID: 36215156 PMCID: PMC10019088 DOI: 10.1099/jgv.0.001794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging New World alphavirus (genus Alphavirus, family Togaviridae) that causes acute multiphasic febrile illness, skin rash, polyarthritis and occasional severe clinical phenotypes. The virus lifecycle alternates between invertebrate and vertebrate hosts. Here we characterize the replication features, cell entry, lifecycle and virus-related cell pathology of MAYV using vertebrate and invertebrate in vitro models. Electron-dense clathrin-coated pits in infected cells and reduced viral production in the presence of dynasore, ammonium chloride and bafilomycin indicate that viral entry occurs through pH-dependent endocytosis. Increase in FITC-dextran uptake (an indicator of macropinocytosis) in MAYV-infected cells, and dose-dependent infection inhibition by 5-(N-ethyl-N-isopropyl) amiloride (a macropinocytosis inhibitor), indicated that macropinocytosis is an additional entry mechanism of MAYV in vertebrate cells. Acutely infected vertebrate and invertebrate cells formed cytoplasmic or membrane-associated extracytoplasmic replication complexes. Mosquito cells showed modified hybrid cytoplasmic vesicles that supported virus replication, nucleocapsid production and maturation. Mature virus particles were released from cells by both exocytosis and budding from the cell membrane. MAYV replication was cytopathic and associated with induction of apoptosis by the intrinsic pathway, and later by the extrinsic pathway in infected vertebrate cells. Given that MAYV is expanding its geographical existence as a potential public health problem, this study lays the foundation for biological understanding that will be valuable for therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Sujit Pujhari
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Marco Brustolin
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Chan C. Heu
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- USDA-ARS, Maricopa, AZ, USA
| | - Ronald Smithwick
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mireia Larrosa
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susan Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jason L. Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
The Dietary Intake of Carrot-Derived Rhamnogalacturonan-I Accelerates and Augments the Innate Immune and Anti-Viral Interferon Response to Rhinovirus Infection and Reduces Duration and Severity of Symptoms in Humans in a Randomized Trial. Nutrients 2021; 13:nu13124395. [PMID: 34959949 PMCID: PMC8704532 DOI: 10.3390/nu13124395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory infections are an important health concern. Traditionally, polysaccharide-enriched extracts from plants, containing immunomodulatory rhamnogalacturonan-I (RG-1), were used prophylactically. We established the effects of dietary supplementation with carrot-derived RG-I (cRG-I, 0–0.3–1.5 g/day) in 177 healthy individuals (18–65 years) on symptoms following infection with rhinovirus strain 16 (RV16). Primary outcomes were changes in severity and duration of symptoms, and viral load in nasal lavage. Secondary outcomes were changes in innate immune and anti-viral responses, reflected by CXCL10 and CXCL8 levels and cell differentials in nasal lavage. In a nested cohort, exploratory transcriptome analysis was conducted on nasal epithelium. Intake of cRG-I was safe, well-tolerated and accelerated local cellular and humoral innate immune responses induced by RV16 infection, with the strongest effects at 1.5 g/d. At 0.3 g/d, a faster interferon-induced response, induction of the key anti-viral gene EIF2AK2, faster viral clearance, and reduced symptom severity (−20%) and duration (−25%) were observed. Anti-viral responses, viral clearance and symptom scores at 1.5 g/d were in between those of 0 and 0.3 g/d, suggesting a negative feedback loop preventing excessive interferon responses. Dietary intake of cRG-I accelerated innate immune and antiviral responses, and reduced symptoms of an acute respiratory viral infection.
Collapse
|
4
|
Pingale KD, Kanade GD, Karpe YA. Hepatitis E virus polymerase binds to IFIT1 to protect the viral RNA from IFIT1-mediated translation inhibition. J Gen Virol 2019; 100:471-483. [PMID: 30702423 DOI: 10.1099/jgv.0.001229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) induces interferons and regulates the induction of interferon-stimulated genes (ISGs) in the host cell. HEV infection has been shown to promote the expression of different ISGs, such as ISG15, IFIT1, MX1, RSAD2/Viperin and CxCL10, in cell culture and animal models. Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) is an ISG-encoded protein that inhibits the translation of viral RNA, having 5'-triphosphate or the mRNA lacking 2'-O-methylation on the 5'cap. In this study, we found that IFIT1 binds to HEV RNA to inhibit its translation. HEV replication is also restricted in hepatoma cells with overexpressed IFIT1. However, despite this binding of IFIT1 to HEV RNA, HEV successfully replicates in hepatoma cells in the infection scenario. In an effort to identify the underlying mechanism, we found that HEV RNA-dependent RNA polymerase (RdRp) binds to IFIT1, thereby protecting the viral RNA from IFIT1-mediated translation inhibition. RdRp sequesters IFIT1, resulting in the successful progression of viral replication in the infected cells. Thus, we discovered a distinct pro-viral role of HEV RdRp that is crucial for successful infection in the host, and propose a unique mechanism developed by HEV to overcome IFIT1-mediated host immune response.
Collapse
Affiliation(s)
- Kunal D Pingale
- 1Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India.,2Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Gayatri D Kanade
- 1Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India.,2Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Yogesh A Karpe
- 1Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India.,2Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
5
|
Sghaier I, Brochot E, Loueslati BY, Almawi WY. Hepatitis C virus protein interaction network for HCV clearance and association of DAA to HCC occurrence via data mining approach: A systematic review and critical analysis. Rev Med Virol 2019; 29:e2033. [PMID: 30614131 DOI: 10.1002/rmv.2033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022]
Abstract
HCV has been associated with a pro-inflammatory state, which predisposes to hepatocellular carcinoma (HCC). However, the different molecular mechanisms underlying the effect of HCV infection on HCC progression remain unclear. Although HCV infection illustrates the potential role of host genetics in the outcome of infectious diseases, there is no clear overview of some single nucleotide polymorphisms (SNPs) influencing spontaneous or treatment-induced HCV eradication. We studied the possible role of HCV infection in the processes of HCC initiation and performed a systematic analysis using data mining approaches to identify host polymorphisms associated with treatment response and HCC development using topological analysis of protein-proteins interactions (PPI) networks. On the basis of our analysis performed, we identified key hub proteins related to HCV-treatment response infection and to HCC development. Host genetic polymorphisms, such as inosine triphosphatase (ITPA), interferon, lambda 3 (IFNL3), Q5 interferon, lambda 4 (IFNL4), toll-like receptors (TLRs) and interferon-stimulated gene 15 (ISG-15), were identified as key genes for treatment prediction and HCC evolution. By comparing unique genes for HCV-treatment response and genes particular to HCV-HCC development, we found a common PPI network that may participate in more extensive signalling processes during anti-HCV treatment, which can play important roles in modulating the immune response to the occurrence of HCC. Data mining is an effective tool for identifying potential regulatory pathways involved in treatment response and HCC development. Our study may contribute to a better understanding of HCV immunopathogenesis and highlights the complex role of host genetics in HCV clearance.
Collapse
Affiliation(s)
- Ikram Sghaier
- University of Tunis El Manar, Biology department, Tunish, Tunisia
| | - Etienne Brochot
- Department of Virology, Amiens University Medical Centre, Amiens, France.,Virology Research Unit, EA 4294, Jules Verne University of Picardie, Amiens, France
| | - Besma Y Loueslati
- Faculty of Sciences of Tunis, department of Biology, Laboratory of Mycology, Pathologies and Biomarkers, Tunis, Tunisia
| | - Wassim Y Almawi
- University of Tunis El Manar, Biology department, Tunish, Tunisia.,School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
6
|
Infectious Bursal Disease Virus Hijacks Endosomal Membranes as the Scaffolding Structure for Viral Replication. J Virol 2018. [PMID: 29540593 DOI: 10.1128/jvi.01964-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Birnaviruses are unconventional members of the group of double-stranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses.IMPORTANCE Infectious bursal disease (IBD; also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects young chickens and spreads worldwide. The etiological agent of IBD is infectious bursal disease virus (IBDV). This virus destroys the central immune organ (bursa of Fabricius), resulting in immunosuppression and reduced responses of chickens to vaccines, which increase their susceptibility to other pathogens. IBDV is a member of Birnaviridae family, which comprises unconventional members of dsRNA viruses, whose replication strategy has been scarcely studied. In this report we show that IBDV hijacks the endosomes of the infected cells for establishing viral replication complexes via the association of the ribonucleoprotein complex component VP3 with the phospholipids in the cytosolic leaflet of endosomal membranes. We show that this interaction is mediated by the VP3 PATCH 2 domain and demonstrate its relevant role in the context of viral infection.
Collapse
|
7
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|