1
|
Zhou Y, Zhang Y, Duan X, Zhou T, Ren A, Deng Y, Zhong L, Liu L, Huang Y, Zheng W, Liu D, Yang L. Choline metabolism modulates cyclic-di-GMP signaling and virulence of Pseudomonas aeruginosa in a macrophage infection model. BMC Infect Dis 2024; 24:1466. [PMID: 39731097 DOI: 10.1186/s12879-024-10375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored. METHODS Here, we employed an in vitro infection model to investigate the role of Cho in intracellular survival and virulence of Pseudomonas aeruginosa (P. aeruginosa). Additionally, a comprehensive RNA-seq based transcriptomic analysis and various phenotypic assays were performed to elucidate the impacts of Cho on P. aeruginosa. RESULTS We observed that the Cho metabolite glycine betaine (GB) effectively reduced intracellular levels of cyclic-di-GMP (c-di-GMP). Supplementation of Cho or GB in P. aeruginosa had thus affected c-di-GMP regulated phenotypes, such as pyoverdine production, biofilm formation, and mobility. Depletion of Cho metabolism through knockout of the betAB operon resulted in compromised intracellular survival of P. aeruginosa. Notably, the P. aeruginosa betAB mutant elicited a more robust protective inflammatory response compared to the wild-type strain. CONCLUSION Our study showed that P. aeruginosa Cho metabolism not only interferes host nutritional immunity, but also directly affect multiple virulence phenotypes through modulation of c-di-GMP signaling.
Collapse
Affiliation(s)
- Yachun Zhou
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Yu Zhang
- Department of Pathogen Biology, International Cancer Centre, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Centre, Shenzhen University Health Science Centre, Shenzhen, 518055, China
| | - Xiangke Duan
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tian Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Anmin Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yingfeng Huang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Dongjing Liu
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| | - Liang Yang
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Liu JJ, Liu J, Huang YS, Chen WM, Lin J. Cyclic Diguanylate G-Quadruplex Inducer-Quorum Sensing Inhibitor Hybrids as Bifunctional Anti-biofilm and Anti-virulence Agents Against Pseudomonas aeruginosa. J Med Chem 2024; 67:18911-18929. [PMID: 39441196 DOI: 10.1021/acs.jmedchem.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The release of virulence factors and biofilm formation by Pseudomonas aeruginosa are pivotal drivers of its severe pathogenicity and antibiotic resistance. Based on our prior findings, cyclic di-GMP (c-di-GMP) G-quadruplex inducers are promising biofilm inhibitors and that quorum sensing systems are central regulators of virulence, we aimed to design and synthesize c-di-GMP G-quadruplex inducer-quorum sensing inhibitor hybrids. These hybrids were envisioned as bifunctional agents with both antibiofilm and antivirulence capabilities. Hybrids A7 and A11, characterized by their quinoline and 3-indole rings, emerged as potent inhibitors. They achieve this dual action by inducing c-di-GMP G-quadruplex formation and disrupting the las and pqs signaling system. Additionally, hybrids A7 and A11 attenuated virulence factors and inhibited the motility phenotypes of P. aeruginosa. Furthermore, when tested in in vivo Caenorhabditis elegans infection models, these hybrids, in combination with antibiotics such as tetracycline, improved survival rates, all while maintaining a favorable biosafety profile.
Collapse
Affiliation(s)
- Jie-Jiao Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ye-Si Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
3
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Tetz V, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz G. Previously unknown regulatory role of extracellular RNA on bacterial directional migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603110. [PMID: 39026763 PMCID: PMC11257571 DOI: 10.1101/2024.07.11.603110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial directional migration plays a significant role in bacterial adaptation. However, the regulation of this process, particularly in young biofilms, remains unclear. Here, we demonstrated the critical role of extracellular RNA as part of the Universal Receptive System in bacterial directional migration using a multidisciplinary approach, including bacterial culture, biochemistry, and genetics. We found that the destruction or inactivation of extracellular RNA with RNase or RNA-specific antibodies in the presence of the chemoattractant triggered the formation of bacterial "runner cells» in what we call a "panic state" capable of directional migration. These cells quickly migrated even on the surface of 1.5% agar and formed evolved colonies that were transcriptionally and biochemically different from the ancestral cells. We have also shown that cell-free DNA from blood plasma can act as a potent bacterial chemoattractant. Our data revealed a previously unknown role of bacterial extracellular RNA in the regulation of bacterial migration and have shown that its destruction or inhibition triggered the directional migration of developing and mature biofilms towards the chemoattractant.
Collapse
|
5
|
Shao L, Shen Z, Li M, Guan C, Fan B, Chai Y, Zhao Y. ccdC Regulates Biofilm Dispersal in Bacillus velezensis FZB42. Int J Mol Sci 2024; 25:5201. [PMID: 38791239 PMCID: PMC11120784 DOI: 10.3390/ijms25105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus velezensis FZB42 is a plant growth-promoting rhizobacterium (PGPR) and a model microorganism for biofilm studies. Biofilms are required for the colonization and promotion of plant growth in the rhizosphere. However, little is known about how the final stage of the biofilm life cycle is regulated, when cells regain their motility and escape the mature biofilm to spread and colonize new niches. In this study, the non-annotated gene ccdC was found to be involved in the process of biofilm dispersion. We found that the ccdC-deficient strain maintained a wrinkled state at the late stage of biofilm formation in the liquid-gas interface culture, and the bottom solution showed a clear state, indicating that no bacterial cells actively escaped, which was further evidenced by the formation of a cellular ring (biofilm pellicle) located on top of the preformed biofilm. It can be concluded that dispersal, a biofilm property that relies on motility proficiency, is also positively affected by the unannotated gene ccdC. Furthermore, we found that the level of cyclic diguanylate (c-di-GMP) in the ccdC-deficient strain was significantly greater than that in the wild-type strain, suggesting that B. velezensis exhibits a similar mechanism by regulating the level of c-di-GMP, the master regulator of biofilm formation, dispersal, and cell motility, which controls the fitness of biofilms in Pseudomonas aeruginosain. In this study, we investigated the mechanism regulating biofilm dispersion in PGPR.
Collapse
Affiliation(s)
- Lin Shao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zizhu Shen
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meiju Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyun Guan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Hu XM, Peng L, Wu J, Wu G, Liang X, Yang JL. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides. NPJ Biofilms Microbiomes 2024; 10:38. [PMID: 38575604 PMCID: PMC10994910 DOI: 10.1038/s41522-024-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Jingxian Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Guanju Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
7
|
Ma Y, Tang WS, Liu SY, Khoo BL, Chua SL. Juglone as a Natural Quorum Sensing Inhibitor against Pseudomonas aeruginosa pqs-Mediated Virulence and Biofilms. ACS Pharmacol Transl Sci 2024; 7:533-543. [PMID: 38357290 PMCID: PMC10863437 DOI: 10.1021/acsptsci.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Pseudomonas aeruginosa is a notorious opportunistic pathogen associated with chronic biofilm-related infections, posing a significant challenge to effective treatment strategies. Quorum sensing (QS) and biofilm formation are critical virulence factors employed by P. aeruginosa, contributing to its pathogenicity and antibiotic resistance. Other than the homoserine-based QS systems, P. aeruginosa also possesses the quinolone-based Pseudomonas quinolone signal (PQS) QS signaling. Synthesis of the PQS signaling molecule is achieved by the pqsABCDEH operon, whereas the PQS signaling response was mediated by the PqsR receptor. In this study, we report the discovery of a novel natural compound, Juglone, with potent inhibitory effects on pqs QS and biofilm formation in P. aeruginosa. Through an extensive screening of natural compounds from diverse sources, we identified Juglone, a natural compound from walnut, as a promising candidate. We showed that Juglone could inhibit PqsR and the molecular docking results revealed that Juglone could potentially bind to the PqsR active site. Furthermore, Juglone could inhibit pqs-regulated virulence factors, such as pyocyanin and the PQS QS signaling molecule. Juglone could also significantly reduce both the quantity and quality of P. aeruginosa biofilms. Notably, this compound exhibited minimal cytotoxicity toward mammalian cells, suggesting its potential safety for therapeutic applications. To explore the clinical relevance of Juglone, we investigated its combinatorial effects with colistin, a commonly used antibiotic against P. aeruginosa infections. The Juglone-colistin combinatorial treatment could eliminate biofilms formed by wild-type P. aeruginosa PAO1 and its clinical isolates collected from cystic fibrosis patients. The Juglone-colistin combinatorial therapy dramatically improved colistin efficacy and reduced inflammation in a wound infection model, indicating its potential for clinical utility. In conclusion, the discovery of Juglone provides insights into the development of innovative antivirulence therapeutic strategies to combat P. aeruginosa biofilm-associated infections.
Collapse
Affiliation(s)
- Yeping Ma
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Wing Suet Tang
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Sylvia Yang Liu
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Bee Luan Khoo
- Department
of Biomedical Engineering, City University
of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong
Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
- City
University of Hong Kong–Shenzhen Futian Research Institute, Shenzhen 518172, China
| | - Song Lin Chua
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State
Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Research
Centre of Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Research
Institute for Future Food (RiFood), The
Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
8
|
Chen K, Li L, Zhou Z, Wang N, Dai C, Sun D, Li J, Xu C, Liao M, Zhang J. BolA promotes the generation of multicellular behavior in S. Typhimurium by regulating the c-di-GMP pathway genes yeaJ and yhjH. Int J Food Microbiol 2024; 411:110518. [PMID: 38101189 DOI: 10.1016/j.ijfoodmicro.2023.110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The generation of multicellular behavior enhances the stress adaptability, antibiotic resistance, and pathogenic potential of Salmonella enterica serovar Typhimurium (S. Typhimurium), which is challenging for its prevention and control. Therefore, determination of the mechanism of multicellular behavior development is urgently required. Accordingly, this study investigated BolA, a transcription factor that promotes bacterial survival under different stresses. We found that BolA promoted the generation of multicellular behavior. Furthermore, transcriptome analysis revealed that BolA affected the expression of numerous genes, including biofilm formation and motility-related genes. In terms of biofilm formation, compared with the wild-type strain, bolA overexpression (269BolA+) increased the extracellular matrix content (extracellular polysaccharide, extracellular protein, and extracellular DNA (eDNA) by upregulating gene expression, ultimately increasing the biofilm formation ability by 2.56 times. For motility, bolA overexpression inhibited the expression of flagella synthesis genes, resulting in a 91.15 % decrease in motility compared with the wild-type (6 h). Further mechanistic analysis demonstrated that BolA affected the expression of the C-di-GMP pathway genes yeaJ and yhjH, which influenced the generation of multicellular behavior. In terms of biofilms, the extracellular polysaccharide content of 269BolA + ∆Yeaj (bolA overexpression and yeaJ deletion) was reduced by 89.91 % compared with 269BolA+, resulting in a 71.1 % reduction in biofilm forming ability. The motility of the 269∆BolA∆Yhjh (bolA/yhjH double deletion) strain was significantly decreased compared with that of 269∆BolA. Finally, the LacZ gene reporting showed that BolA promoted and inhibited the expression of yeaJ and yhjH, respectively. In conclusion, BolA mainly improves the content of extracellular polysaccharide by promoting the expression of yeaJ, thus enhancing the formation of biofilms. BolA also restricts flagellar synthesis by inhibiting yhjH expression, therefore reducing motility, ultimately promoting multicellular behavior arises. These findings lay a theoretical foundation for the prevention and control of S. Typhimurium.
Collapse
Affiliation(s)
- Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lili Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhouping Zhou
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Nanwei Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Changzhi Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dage Sun
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Feng Q, Zhou J, Zhang L, Fu Y, Yang L. Insights into the molecular basis of c-di-GMP signalling in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:20-38. [PMID: 36539391 DOI: 10.1080/1040841x.2022.2154140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can cause severe infections in immunocompromized people or cystic fibrosis (CF) patients. Because of its remarkable ability to invade the host and withstand the bacteriocidal effect of most conventional antibiotics, the infection caused by P. aeruginosa has become a major concern for human health. The switch from acute to chronic infection is governed by the second messenger bis-(3'-5')-cyclic dimeric guanosine mono-phosphate (c-di-GMP) in P. aeruginosa, and c-di-GMP is now recognized to regulate many important biological processes in pathogenesis. The c-di-GMP signalling mechanisms in P. aeruginosa have been studied extensively in the past decade, revealing complicated c-di-GMP metabolism and signalling network. In this review, the underlying mechanisms of this signalling network will be discussed, mainly focussing on how environmental cues regulate c-di-GMP signalling, protein-protein interaction mediated functional regulation, heterogeneity of c-di-GMP and cross talk between c-di-GMP signalling and other signalling systems. Understanding the molecular mechanism underlying the complex c-di-GMP signalling network would be beneficial for developing therapeutic approaches and antibacterial agents to combat the threat from P. aeruginosa.
Collapse
Affiliation(s)
- Qishun Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| |
Collapse
|
10
|
Abstract
The first discovered and well-characterized bacterial quorum sensing (QS) system belongs to Vibrio fischeri, which uses N-acyl homo-serine lactones (AHLs) for cell-cell signaling. AHL QS cell-cell communication is often regarded as a cell density-dependent regulatory switch. Since the discovery of QS, it has been known that AHL concentration (which correlates imperfectly with cell density) is not necessarily the only QS trigger. Additionally, not all cells respond to a QS signal. Bacteria could, via QS, exhibit phenotypic heterogeneity, resulting in sub-populations with unique phenotypes. It is time to ascribe greater importance to QS-dependent phenotypic heterogeneity, and its potential purpose in natura, with emphasis on the division of labor, specialization, and "bet-hedging". We hope that this perspective article will stimulate the awareness that QS can be more than just a cell-density switch. This basic mechanism could result in "bacterial civilizations", thus forcing us to reconsider the way bacterial communities are envisioned in natura.
Collapse
Affiliation(s)
- Mihael Spacapan
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
11
|
Ruhal R, Ghosh M, Kumar V, Jain D. Mutation of putative glycosyl transferases PslC and PslI confers susceptibility to antibiotics and leads to drastic reduction in biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001392. [PMID: 37702709 PMCID: PMC10569066 DOI: 10.1099/mic.0.001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic, multidrug-resistant pathogen capable of adapting to numerous environmental conditions and causing fatal infections in immunocompromised patients. The predominant lifestyle of P. aeruginosa is in the form of biofilms, which are structured communities of bacteria encapsulated in a matrix containing exopolysaccharides, extracellular DNA (eDNA) and proteins. The matrix is impervious to antibiotics, rendering the bacteria tolerant to antimicrobials. P. aeruginosa also produces a plethora of virulence factors such as pyocyanin, rhamnolipids and lipopolysaccharides among others. In this study we present the molecular characterization of pslC and pslI genes, of the exopolysaccharide operon, that code for putative glycosyltransferases. PslC is a 303 amino acid containing putative GT2 glycosyltrasferase, whereas PslI is a 367 aa long protein, possibly functioning as a GT4 glycosyltransferase. Mutation in either of these two genes results in a significant reduction in biofilm biomass with concomitant decline in c-di-GMP levels in the bacterial cells. Moreover, mutation in pslC and pslI dramatically increased susceptibility of P. aeruginosa to tobramycin, colistin and ciprofloxacin. Additionally, these mutations also resulted in an increase in rhamnolipids and pyocyanin formation. We demonstrate that elevated rhamnolipids promote a swarming phenotype in the mutant strains. Together these results highlight the importance of PslC and PslI in the biogenesis of biofilms and their potential as targets for increased antibiotic susceptibility and biofilm inhibition.
Collapse
Affiliation(s)
- Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Vineet Kumar
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
12
|
Gür M, Erdmann J, Will A, Liang Z, Andersen JB, Tolker-Nielsen T, Häussler S. Challenges in using transcriptome data to study the c-di-GMP signaling network in Pseudomonas aeruginosa clinical isolates. FEMS MICROBES 2023; 4:xtad012. [PMID: 37564278 PMCID: PMC10411656 DOI: 10.1093/femsmc/xtad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
In the Pseudomonas aeruginosa type strain PA14, 40 genes are known to encode for diguanylate cyclases (DGCs) and/or phosphodiesterases (PDEs), which modulate the intracellular pool of the nucleotide second messenger c-di-GMP. While in general, high levels of c-di-GMP drive the switch from highly motile phenotypes towards a sessile lifestyle, the different c-di-GMP modulating enzymes are responsible for smaller and in parts nonoverlapping phenotypes. In this study, we sought to utilize previously recorded P. aeruginosa gene expression datasets on 414 clinical isolates to uncover transcriptional changes as a result of a high expression of genes encoding DGCs. This approach might provide a unique opportunity to bypass the problem that for many c-di-GMP modulating enzymes it is not known under which conditions their expression is activated. However, while we demonstrate that the selection of subgroups of clinical isolates with high versus low expression of sigma factor encoding genes served the identification of their downstream regulons, we were unable to confirm the predicted DGC regulons, because the high c-di-GMP associated phenotypes were rapidly lost in the clinical isolates,. Further studies are needed to determine the specific mechanisms underlying the loss of cyclase activity upon prolonged cultivation of clinical P. aeruginosa isolates.
Collapse
Affiliation(s)
- Melisa Gür
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
| | - Jelena Erdmann
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
| | - Anke Will
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
| | - Ziwei Liang
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B 24.1, 2100 Copenhagen, Denmark
| | - Jens Bo Andersen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B 24.1, 2100 Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B 24.1, 2100 Copenhagen, Denmark
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30265 Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Ole Maaloes Vej 26, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Lima EMF, Winans SC, Pinto UM. Quorum sensing interference by phenolic compounds - A matter of bacterial misunderstanding. Heliyon 2023; 9:e17657. [PMID: 37449109 PMCID: PMC10336516 DOI: 10.1016/j.heliyon.2023.e17657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/15/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Over the past decade, numerous publications have emerged in the literature focusing on the inhibition of quorum sensing (QS) by plant extracts and phenolic compounds. However, there is still a scarcity of studies that delve into the specific mechanisms by which these compounds inhibit QS. Thus, our question is whether phenolic compounds can inhibit QS in a specific or indirect manner and to elucidate the underlying mechanisms involved. This study is focused on the most studied QS system, namely, autoinducer type 1 (AI-1), represented by N-acyl-homoserine lactone (AHL) signals and the AHL-mediated QS responses. Here, we analyzed the recent literature in order to understand how phenolic compounds act at the cellular level, at sub-inhibitory concentrations, and evaluated by which QS inhibition mechanisms they may act. The biotechnological application of QS inhibitors holds promising prospects for the pharmaceutical and food industries, serving as adjunct therapies and in the prevention of biofilms on various surfaces.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Stephen C. Winans
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Pan X, Liang H, Zhao X, Zhang Q, Chen L, Yue Z, Yin L, Jin Y, Bai F, Cheng Z, Bartlam M, Wu W. Regulatory and structural mechanisms of PvrA-mediated regulation of the PQS quorum-sensing system and PHA biosynthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2023; 51:2691-2708. [PMID: 36744476 PMCID: PMC10085694 DOI: 10.1093/nar/gkad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Han Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, Guangdong 518045, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL. Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei. J Microbiol Biotechnol 2023; 33:15-27. [PMID: 36451302 PMCID: PMC9899790 DOI: 10.4014/jmb.2207.07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Collapse
Affiliation(s)
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Corresponding author Phone: +03 8921 4561 Fax: +603 8921 3398 E-mail:
| |
Collapse
|
16
|
Banu Raza F, Vijayaragavalu S, Kandasamy R, Krishnaswami V, Kumar V A. Microbiome and the inflammatory pathway in peri-implant health and disease with an updated review on treatment strategies. J Oral Biol Craniofac Res 2023; 13:84-91. [PMID: 36504486 PMCID: PMC9730223 DOI: 10.1016/j.jobcr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crestal bone preservation around the dental implant for aesthetic and functional success is widely researched and documented over a decade. Several etiological factors were put forth for crestal bone loss; of which biofilm plays a major role. Biofilm is formed by the colonization of wide spectra of bacteria inhabited around dental implants. Bacterial adherence affects the regulators of bone growth and an early intervention preserves the peri-implant bone. Primary modes of therapy stated in early literature were either prevention or treatment of infection caused by biofilm. This narrative review overviews the microbiome during different stages of peri-implant health, the mechanism of bone destruction, and the expression of the biomarkers at each stage. Microbial contamination and the associated biomarkers varied depending on the stage of peri-implant infection. The comprehensive review helps in formulating a research plan, both in diagnostics and treatment aspects in improving peri-implant health.
Collapse
Key Words
- Antibiotics
- Biomarkers
- CD14, Cluster of Differentiation 14
- CSF, Colony-Stimulating Factor
- Gene expression
- IL, Interleukins
- MMP 8, Matrix MetalloProteinase 8
- Microbiota
- OPG, Osteoprotegerin
- PSMB 2, Proteasome subunit beta type-2
- Peri-implant
- RANK, Receptor Activator of Nuclear factor Kappa-Β
- RANKL, Receptor Activator of Nuclear factor Kappa-ΒLigand
- TIMP, Tissue inhibitor of Metalloproteinase
- TNF, Tumor Necrosis Factor
- TWEAK, TNF-related weak inducer of apoptosis
- VEGF, Vascular Endothelial Growth Factor
- sRANKL, soluble Receptor Activator of Nuclear Factor-κB Ligand
Collapse
Affiliation(s)
- Fathima Banu Raza
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Anand Kumar V
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
- Corresponding author. Department of Prosthodontics, Faculty of Dental Sciences, SRIHER (DU), Porur, Chennai, Tamil Nadu, India.
| |
Collapse
|
17
|
Dubern JF, Romero M, Mai-Prochnow A, Messina M, Trampari E, Gijzel HNV, Chan KG, Carabelli AM, Barraud N, Lazenby J, Chen Y, Robertson S, Malone JG, Williams P, Heeb S, Cámara M. ToxR is a c-di-GMP binding protein that modulates surface-associated behaviour in Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2022; 8:64. [PMID: 35982053 PMCID: PMC9388670 DOI: 10.1038/s41522-022-00325-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa uses multiple protein regulators that work in tandem to control the production of a wide range of virulence factors and facilitate rapid adaptation to diverse environmental conditions. In this opportunistic pathogen, ToxR was known to positively regulate the production of the major virulence factor exotoxin A and now, through analysis of genetic changes between two sublines of P. aeruginosa PAO1 and functional complementation of swarming, we have identified a previously unknown role of ToxR in surface-associated motility in P. aeruginosa. Further analysis revealed that ToxR had an impact on swarming motility by regulating the Rhl quorum sensing system and subsequent production of rhamnolipid surfactants. Additionally, ToxR was found to tightly bind cyclic diguanylate (c-di-GMP) and negatively affect traits controlled by this second messenger including reducing biofilm formation and the expression of Psl and Pel exopolysaccharides, necessary for attachment and sessile communities matrix scaffolding, in P. aeruginosa. Moreover, a link between the post-transcriptional regulator RsmA and toxR expression via the alternative sigma factor PvdS, induced under iron-limiting conditions, is established. This study reveals the importance of ToxR in a sophisticated regulation of free-living and biofilm-associated lifestyles, appropriate for establishing acute or chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Jean-Frédéric Dubern
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anne Mai-Prochnow
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Marco Messina
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Science, University Roma Tre, Rome, Italy
| | - Eleftheria Trampari
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Hardeep Naghra-van Gijzel
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Genomic Sciences, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Alessandro M Carabelli
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicolas Barraud
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
- Genetics of Biofilms Unit, Institut Pasteur, Paris, France
| | - James Lazenby
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ye Chen
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Q Squared Solutions, Crystal Plaza, Pudong, Shanghai, China
| | - Shaun Robertson
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
18
|
Patil PD, Zheng H, Burns FN, Ibanez ACS, Jin Y, Luk YY. Chimeric Ligands of Pili and Lectin A Inhibit Tolerance, Persistence, and Virulence Factors of Pseudomonas aeruginosa over a Wide Range of Phenotypes. ACS Infect Dis 2022; 8:1582-1593. [PMID: 35658414 PMCID: PMC9379910 DOI: 10.1021/acsinfecdis.2c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Bacteria readily
form resilient phenotypes to counter environmental
and antibiotic stresses. Here, we demonstrate a class of small molecules
that inhibit a wide range of Pseudomonas aeruginosa phenotypes and enable antibiotics to kill previously tolerant bacteria,
preventing the transition of tolerant bacteria into a persistent population.
We identified two proteins, type IV pili and lectin LecA, as receptors
for our molecules by methods including a new label-free assay based
on bacterial motility sensing the chemicals in the environment, the
chemical inhibition of bacteriophage adsorption on pili appendages
of bacteria, and fluorescence polarization. Structure–activity
relationship studies reveal a molecule that inhibits only pili appendage
and a class of chimeric ligands that inhibit both LecA and pili. Important
structural elements of the ligand are identified for each protein.
This selective ligand binding identifies the phenotypes each protein
receptor controls. Inhibiting LecA results in reducing biofilm formation,
eliminating small colony variants, and is correlated with killing
previously tolerant bacteria. Inhibiting pili appendages impedes swarming
and twitching motilities and pyocyanin and elastase production. Because
these phenotypes are controlled by a broad range of signaling pathways,
this approach simultaneously controls the multiple signaling mechanisms
preventing bacteria to elude antibiotic treatments.
Collapse
Affiliation(s)
- Pankaj D Patil
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Hewen Zheng
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Felicia N Burns
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Arizza C S Ibanez
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Yuchen Jin
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Yan-Yeung Luk
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| |
Collapse
|
19
|
The c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and Pf4 Bacteriophage Production in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2022; 88:e0003922. [PMID: 35638845 DOI: 10.1128/aem.00039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Pseudomonas aeruginosa PAO1, 41 genes encode proteins predicted to be involved in the production or degradation of c-di-GMP, a ubiquitous secondary messenger that regulates a variety of physiological behaviors closely related to biofilm and aggregate formation. Despite extensive effort, the entire picture of this important signaling network is still unclear, with one-third of these proteins remaining uncharacterized. Here, we show that the deletion of pipA, which produces a protein containing two PAS domains upstream of a GGDEF-EAL tandem, significantly increased the intracellular c-di-GMP level and promoted the formation of aggregates both on surfaces and in planktonic cultures. However, this regulatory effect was not contributed by either of the two classic pathways modulating biofilm formation, exopolysaccharide (EPS) overproduction or motility inhibition. Transcriptome sequencing (RNA-Seq) data revealed that the expression levels of 361 genes were significantly altered in a ΔpipA mutant strain compared to the wild type (WT), indicating the critical role of PipA in PAO1. The most remarkably downregulated genes were located on the Pf4 bacteriophage gene cluster, which corresponded to a 2-log reduction in the Pf4 phage production in the ΔpipA mutant. The sizes of aggregates in ΔpipA cultures were affected by exogenously added Pf4 phage in a concentration-dependent manner, suggesting the quantity of phage plays a part in regulating the formation of aggregates. Further analysis demonstrated that PipA is highly conserved across 83 P. aeruginosa strains. Our work therefore for the first time showed that a c-di-GMP phosphodiesterase can regulate bacteriophage production and provided new insights into the relationship between bacteriophage and bacterial aggregation. IMPORTANCE The c-di-GMP signaling pathways in P. aeruginosa are highly organized and well coordinated, with different diguanylate cyclases and phosphodiesterases playing distinct roles in a complex network. Understanding the function of each enzyme and the underlying regulatory mechanisms not only is crucial for revealing how bacteria decide the transition between motile and sessile lifestyles, but also greatly facilitates the development of new antibiofilm strategies. This work identified bacteriophage production as a novel phenotypic output controlled transcriptionally by a phosphodiesterase, PipA. Further analysis suggested that the quantity of phage may be important in regulating autoaggregation, as either a lack of phage or overproduction was associated with higher levels of aggregation. Our study therefore extended the scope of c-di-GMP-controlled phenotypes and discovered a potential signaling circuit that can be target for biofilm treatment.
Collapse
|
20
|
Li S, Liu SY, Chan SY, Chua SL. Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection. THE ISME JOURNAL 2022; 16:1388-1396. [PMID: 35034106 PMCID: PMC9038794 DOI: 10.1038/s41396-022-01190-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
Microbes often secrete high levels of quorum sensing (QS) autoinducers into the environment to coordinate gene expression and biofilm formation, but risk detection and subsequent predation by bacterivorous predators. With such prominent signaling molecules acting as chemoattractants that diffuse into the environment at alarmingly high concentrations, it is unclear if bacterial cells can mask their chemical trails from predator detection. Here, we describe a microbial-based anti-detection adaptation, termed as "biofilm cloak", where the biofilm prey produced biofilm matrix exopolysaccharides that "locked" and reduced the leaching of autoinducers into the milieu, thereby concealing their trails to the detection by the bacterivorous Caenorhabditis elegans nematode. The exopolysaccharides act as common good for the non-producers to hide their autoinducers from predator detection. Deficiency in chemosensory gene odr-10 in mutant animals abrogated their ability to detect autoinducers and migrate toward their prey in a directed manner, which led to lower population growth rate of animals. Hence, restriction of bacterial communication activities to the confinements of biofilms is a novel approach for predator evasion, which plays a fundamental role in shaping ecological dynamics of microbial communities and predator-prey interactions.
Collapse
Affiliation(s)
- Shaoyang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
21
|
Banerjee B, Zeng Q, Yu M, Hsueh BY, Waters CM, Yang CH. Quorum-Sensing Master Regulator VfmE Is a c-di-GMP Effector That Controls Pectate Lyase Production in the Phytopathogen Dickeya dadantii. Microbiol Spectr 2022; 10:e0180521. [PMID: 35352959 PMCID: PMC9045272 DOI: 10.1128/spectrum.01805-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Dickeya dadantii is a phytopathogenic bacterium that causes diseases on a wide range of host plants. The pathogen secretes pectate lyases (Pel) through the type II secretion system (T2SS) that degrades the cell wall in host plants. The virulence of D. dadantii is controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP), and the homeostasis of c-di-GMP is maintained by a number of diguanylate cyclases and phosphodiesterases. Deletion of a phosphodiesterase ecpC repressed pelD transcription, and such repression can be suppressed by an additional deletion in vfmE. VfmE is an AraC type of transcriptional regulator in the Vfm quorum-sensing system. Our results suggest that VfmE is a c-di-GMP effector that functions as an activator of pel at low c-di-GMP concentrations and a repressor of pel at high c-di-GMP concentrations through regulation of the transcriptional activator SlyA. Multiple sequence alignment with known c-di-GMP effectors identified an RWIWR motif in VfmE that we demonstrate is required for the c-di-GMP binding. Mutation of R93D in the RxxxR motif eliminates the c-di-GMP-related phenotypes in Pel activity. Our results show that VfmE is not only a quorum-sensing regulator but also a c-di-GMP effector, suggesting that D. dadantii integrates the c-di-GMP signaling network with the Vfm quorum-sensing pathway during environmental adaptation. IMPORTANCE How bacteria integrate environmental cues from multiple sources to appropriately regulate adaptive phenotypes is a central question in microbiology. In Dickeya dadantii, the quorum-sensing regulator VfmE controls the key virulence factor pectate lyase (Pel). Here, we demonstrate that VfmE also binds to c-di-GMP, resulting in VfmE functioning as an activator of pel at low c-di-GMP concentrations and repressor of pel at high c-di-GMP concentrations. The RWIWR motif in VfmE is required for c-di-GMP binding, and mutation of the motif in the mutant R93D eliminates the c-di-GMP-related phenotypes in Pel activity. We propose that VfmE is an important mediator to integrate quorum-sensing signals with c-di-GMP to collectively regulate D. dadantii pathogenesis.
Collapse
Affiliation(s)
- Biswarup Banerjee
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
22
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 2022; 50:3658-3672. [PMID: 35357493 PMCID: PMC9023270 DOI: 10.1093/nar/gkac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
23
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
24
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
25
|
Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, Tolker-Nielsen T. Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2021; 7:59. [PMID: 34244523 PMCID: PMC8271024 DOI: 10.1038/s41522-021-00225-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial biofilms are involved in a number of infections that cannot be cured, as microbes in biofilms resist host immune defenses and antibiotic therapies. With no strict biofilm-antibiotic in the current pipelines, there is an unmet need for drug candidates that enable the current antibiotics to eradicate bacteria in biofilms. We used high-throughput screening to identify chemical compounds that reduce the intracellular c-di-GMP content in Pseudomonas aeruginosa. This led to the identification of a small molecule that efficiently depletes P. aeruginosa for c-di-GMP, inhibits biofilm formation, and disperses established biofilm. A combination of our lead compound with standard of care antibiotics showed improved eradication of an implant-associated infection established in mice. Genetic analyses provided evidence that the anti-biofilm compound stimulates the activity of the c-di-GMP phosphodiesterase BifA in P. aeruginosa. Our work constitutes a proof of concept for c-di-GMP phosphodiesterase-activating drugs administered in combination with antibiotics as a viable treatment strategy for otherwise recalcitrant infections.
Collapse
Affiliation(s)
- Jens Bo Andersen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Dahl Hultqvist
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tim Holm Jakobsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nilsson
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School Carl-Neuberg-Straße 1, Hannover, Germany
| | - Jens Berthelsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Eiland Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Michael Givskov
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Krol E, Schäper S, Becker A. Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia. Biol Chem 2021; 401:1335-1348. [PMID: 32990642 DOI: 10.1515/hsz-2020-0232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger which has been associated with a motile to sessile lifestyle switch in many bacteria. Here, we review recent insights into c-di-GMP regulated processes related to environmental adaptations in alphaproteobacterial rhizobia, which are diazotrophic bacteria capable of fixing nitrogen in symbiosis with their leguminous host plants. The review centers on Sinorhizobium meliloti, which in the recent years was intensively studied for its c-di-GMP regulatory network.
Collapse
Affiliation(s)
- Elizaveta Krol
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032 Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Simon Schäper
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032 Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| |
Collapse
|
27
|
Fernández-Llamosas H, Díaz E, Carmona M. Motility, Adhesion and c-di-GMP Influence the Endophytic Colonization of Rice by Azoarcus sp. CIB. Microorganisms 2021; 9:microorganisms9030554. [PMID: 33800326 PMCID: PMC7998248 DOI: 10.3390/microorganisms9030554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Proficient crop production is needed to ensure the feeding of a growing global population. The association of bacteria with plants plays an important role in the health state of the plants contributing to the increase of agricultural production. Endophytic bacteria are ubiquitous in most plant species providing, in most cases, plant promotion properties. However, the knowledge on the genetic determinants involved in the colonization of plants by endophytic bacteria is still poorly understood. In this work we have used a genetic approach based on the construction of fliM, pilX and eps knockout mutants to show that the motility mediated by a functional flagellum and the pili type IV, and the adhesion modulated by exopolysaccarides are required for the efficient colonization of rice roots by the endophyte Azoarcus sp. CIB. Moreover, we have demonstrated that expression of an exogenous diguanylate cyclase or phophodiesterase, which causes either an increase or decrease of the intracellular levels of the second messenger cyclic di-GMP (c-di-GMP), respectively, leads to a reduction of the ability of Azoarcus sp. CIB to colonize rice plants. Here we present results demonstrating the unprecedented role of the universal second messenger cyclic-di-GMP in plant colonization by an endophytic bacterium, Azoarcus sp. CIB. These studies pave the way to further strategies to modulate the interaction of endophytes with their target plant hosts.
Collapse
|
28
|
Quorum Sensing Signaling Molecules Positively Regulate c-di-GMP Effector PelD Encoding Gene and PEL Exopolysaccharide Biosynthesis in Extremophile Bacterium Acidithiobacillus thiooxidans. Genes (Basel) 2021; 12:genes12010069. [PMID: 33430222 PMCID: PMC7825692 DOI: 10.3390/genes12010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023] Open
Abstract
Acidithiobacillus species are fundamental players in biofilm formation by acidophile bioleaching communities. It has been previously reported that Acidithiobacillus ferrooxidans possesses a functional quorum sensing mediated by acyl-homoserine lactones (AHL), involved in biofilm formation, and AHLs naturally produced by Acidithiobacillus species also induce biofilm formation in Acidithiobacillus thiooxidans. A c-di-GMP pathway has been characterized in Acidithiobacillus species but it has been pointed out that the c-di-GMP effector PelD and pel-like operon are only present in the sulfur oxidizers such as A. thiooxidans. PEL exopolysaccharide has been recently involved in biofilm formation in this Acidithiobacillus species. Here, by comparing wild type and ΔpelD strains through mechanical analysis of biofilm-cells detachment, fluorescence microscopy and qPCR experiments, the structural role of PEL exopolysaccharide and the molecular network involved for its biosynthesis by A. thiooxidans were tackled. Besides, the effect of AHLs on PEL exopolysaccharide production was assessed. Mechanical resistance experiments indicated that the loss of PEL exopolysaccharide produces fragile A. thiooxidans biofilms. qRT-PCR analysis established that AHLs induce the transcription of pelA and pelD genes while epifluorescence microscopy studies revealed that PEL exopolysaccharide was required for the development of AHL-induced biofilms. Altogether these results reveal for the first time that AHLs positively regulate pel genes and participate in the molecular network for PEL exopolysaccharide biosynthesis by A. thiooxidans.
Collapse
|
29
|
Deryabin D, Inchagova K, Rusakova E, Duskaev G. Coumarin's Anti-Quorum Sensing Activity Can Be Enhanced When Combined with Other Plant-Derived Small Molecules. Molecules 2021; 26:E208. [PMID: 33401594 PMCID: PMC7795503 DOI: 10.3390/molecules26010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022] Open
Abstract
Coumarins are class of natural aromatic compounds based on benzopyrones (2H-1-benzopyran-2-ones). They are identified as secondary metabolites in about 150 different plant species. The ability of coumarins to inhibit cell-to-cell communication in bacterial communities (quorum sensing; QS) has been previously described. Coumarin and its derivatives in plant extracts are often found together with other small molecules that show anti-QS properties too. The aim of this study was to find the most effective combinations of coumarins and small plant-derived molecules identified in various plants extracts that inhibit QS in Chromobacterium violaceum ATCC 31532 violacein production bioassay. The coumarin and its derivatives: 7-hydroxycoumarin, 7.8-dihydroxy-4-methylcoumarin, were included in the study. Combinations of coumarins with gamma-octalactone, 4-hexyl-1.3-benzenediol, 3.4.5-trimethoxyphenol and vanillin, previously identified in oak bark (Quercus cortex), and eucalyptus leaves (Eucalyptus viminalis) extracts, were analyzed in a bioassay. When testing two-component compositions, it was shown that 7.8-dihydroxy-4-methylcoumarin, 4-hexyl-1.3-benzendiol, and gamma-octalactone showed a supra-additive anti-QS effect. Combinations of all three molecules resulted in a three- to five-fold reduction in the concentration of each compound needed to achieve EC50 (half maximal effective concentration) against QS in C. violaceum ATCC 31532.
Collapse
Affiliation(s)
| | | | - Elena Rusakova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg 460000, Russia; (D.D.); (K.I.); (G.D.)
| | | |
Collapse
|
30
|
Bharatula LD, Marsili E, Rice SA, Kwan JJ. Influence of High Intensity Focused Ultrasound on the Microstructure and c-di-GMP Signaling of Pseudomonas aeruginosa Biofilms. Front Microbiol 2020; 11:599407. [PMID: 33384674 PMCID: PMC7769819 DOI: 10.3389/fmicb.2020.599407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Bacterial biofilms are typically more tolerant to antimicrobials compared to bacteria in the planktonic phase and therefore require alternative treatment approaches. Mechanical biofilm disruption from ultrasound may be such an alternative by circumventing rapid biofilm adaptation to antimicrobial agents. Although ultrasound facilitates biofilm dispersal and may enhance the effectiveness of antimicrobial agents, the resulting biological response of bacteria within the biofilms remains poorly understood. To address this question, we investigated the microstructural effects of Pseudomonas aeruginosa biofilms exposed to high intensity focused ultrasound (HIFU) at different acoustic pressures and the subsequent biological response. Confocal microscopy images indicated a clear microstructural response at peak negative pressures equal to or greater than 3.5 MPa. In this pressure amplitude range, HIFU partially reduced the biomass of cells and eroded exopolysaccharides from the biofilm. These pressures also elicited a biological response; we observed an increase in a biomarker for biofilm development (cyclic-di-GMP) proportional to ultrasound induced biofilm removal. Cyclic-di-GMP overproducing mutant strains were also more resilient to disruption from HIFU at these pressures. The biological response was further evidenced by an increase in the relative abundance of cyclic-di-GMP overproducing variants present in the biofilm after exposure to HIFU. Our results, therefore, suggest that both physical and biological effects of ultrasound on bacterial biofilms must be considered in future studies.
Collapse
Affiliation(s)
- Lakshmi Deepika Bharatula
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Chemical and Materials Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James J. Kwan
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Thi MTT, Wibowo D, Rehm BH. Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2020; 21:ijms21228671. [PMID: 33212950 PMCID: PMC7698413 DOI: 10.3390/ijms21228671] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing devastating acute and chronic infections in individuals with compromised immune systems. Its highly notorious persistence in clinical settings is attributed to its ability to form antibiotic-resistant biofilms. Biofilm is an architecture built mostly by autogenic extracellular polymeric substances which function as a scaffold to encase the bacteria together on surfaces, and to protect them from environmental stresses, impedes phagocytosis and thereby conferring the capacity for colonization and long-term persistence. Here we review the current knowledge on P. aeruginosa biofilms, its development stages, and molecular mechanisms of invasion and persistence conferred by biofilms. Explosive cell lysis within bacterial biofilm to produce essential communal materials, and interspecies biofilms of P. aeruginosa and commensal Streptococcus which impedes P. aeruginosa virulence and possibly improves disease conditions will also be discussed. Recent research on diagnostics of P. aeruginosa infections will be investigated. Finally, therapeutic strategies for the treatment of P. aeruginosa biofilms along with their advantages and limitations will be compiled.
Collapse
|
32
|
Balabanova L, Shkryl Y, Slepchenko L, Cheraneva D, Podvolotskaya A, Bakunina I, Nedashkovskaya O, Son O, Tekutyeva L. Genomic Features of a Food-Derived Pseudomonas aeruginosa Strain PAEM and Biofilm-Associated Gene Expression under a Marine Bacterial α-Galactosidase. Int J Mol Sci 2020; 21:ijms21207666. [PMID: 33081309 PMCID: PMC7593944 DOI: 10.3390/ijms21207666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The biofilm-producing strains of P. aeruginosa colonize various surfaces, including food products and industry equipment that can cause serious human and animal health problems. The biofilms enable microorganisms to evolve the resistance to antibiotics and disinfectants. Analysis of the P. aeruginosa strain (serotype O6, sequence type 2502), isolated from an environment of meat processing (PAEM) during a ready-to-cook product storage (−20 °C), showed both the mosaic similarity and differences between free-living and clinical strains by their coding DNA sequences. Therefore, a cold shock protein (CspA) has been suggested for consideration of the evolution probability of the cold-adapted P. aeruginosa strains. In addition, the study of the action of cold-active enzymes from marine bacteria against the food-derived pathogen could contribute to the methods for controlling P. aeruginosa biofilms. The genes responsible for bacterial biofilm regulation are predominantly controlled by quorum sensing, and they directly or indirectly participate in the synthesis of extracellular polysaccharides, which are the main element of the intercellular matrix. The levels of expression for 14 biofilm-associated genes of the food-derived P. aeruginosa strain PAEM in the presence of different concentrations of the glycoside hydrolase of family 36, α-galactosidase α-PsGal, from the marine bacterium Pseudoalteromonas sp. KMM 701 were determined. The real-time PCR data clustered these genes into five groups according to the pattern of positive or negative regulation of their expression in response to the action of α-galactosidase. The results revealed a dose-dependent mechanism of the enzymatic effect on the PAEM biofilm synthesis and dispersal genes.
Collapse
Affiliation(s)
- Larissa Balabanova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- Correspondence: (L.B.); (Y.S.)
| | - Yuri Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia
- Correspondence: (L.B.); (Y.S.)
| | - Lubov Slepchenko
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| | - Daria Cheraneva
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
| | - Anna Podvolotskaya
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| | - Irina Bakunina
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
| | - Olga Nedashkovskaya
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
| | - Oksana Son
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| | - Liudmila Tekutyeva
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| |
Collapse
|
33
|
Castelo-Branco DDSCM, Amando BR, Ocadaque CJ, Aguiar LD, Paiva DDDQ, Diógenes EM, Guedes GMDM, Costa CL, Santos-Filho ASP, Andrade ARCD, Cordeiro RDA, Rocha MFG, Sidrim JJC. Mini-review: from in vitro to ex vivo studies: an overview of alternative methods for the study of medical biofilms. BIOFOULING 2020; 36:1129-1148. [PMID: 33349038 DOI: 10.1080/08927014.2020.1859499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Microbial biofilms are a natural adaptation of microorganisms, typically composed of multiple microbial species, exhibiting complex community organization and cooperation. Biofilm dynamics and their complex architecture are challenging for basic analyses, including the number of viable cells, biomass accumulation, biofilm morphology, among others. The methods used to study biofilms range from in vitro techniques to complex in vivo models. However, animal welfare has become a major concern, not only in society, but also in the academic and scientific field. Thus, the pursuit for alternatives to in vivo biofilm analyses presenting characteristics that mimic in vivo conditions has become essential. In this context, the present review proposes to provide an overview of strategies to study biofilms of medical interest, with emphasis on alternatives that approximate experimental conditions to host-associated environments, such as the use of medical devices as substrata for biofilm formation, microcosm and ex vivo models.
Collapse
Affiliation(s)
- Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Bruno Rocha Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Crister José Ocadaque
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Lara de Aguiar
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Brazil
| | - Débora Damásio de Queiroz Paiva
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Expedito Maia Diógenes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Glaucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Cecília Leite Costa
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Anísio Silvestre Pinheiro Santos-Filho
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Raquel Colares de Andrade
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
34
|
Chan SY, Liu SY, Seng Z, Chua SL. Biofilm matrix disrupts nematode motility and predatory behavior. ISME JOURNAL 2020; 15:260-269. [PMID: 32958848 DOI: 10.1038/s41396-020-00779-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
In nature, bacteria form biofilms by producing exopolymeric matrix that encases its entire community. While it is widely known that biofilm matrix can prevent bacterivore predation and contain virulence factors for killing predators, it is unclear if they can alter predator motility. Here, we report a novel "quagmire" phenotype, where Pseudomonas aeruginosa biofilms could retard the motility of bacterivorous nematode Caenorhabditis elegans via the production of a specific exopolysaccharide, Psl. Psl could reduce the roaming ability of C. elegans by impeding the slithering velocity of C. elegans. Furthermore, the presence of Psl in biofilms could entrap C. elegans within the matrix, with dire consequences to the nematode. After being trapped in biofilms, C. elegans could neither escape effectively from aversive stimuli (noxious blue light), nor leave easily to graze on susceptible biofilm areas. Hence, this reduced the ability of C. elegans to roam and predate on biofilms. Taken together, our work reveals a new function of motility interference by specific biofilm matrix components, and emphasizes its importance in predator-prey interactions.
Collapse
Affiliation(s)
- Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zijing Seng
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China. .,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
35
|
Galkin M, Semenets A, Galkin B, Filipova T. Quorum sensing autoinducers biosynthesis by biofilm cultures of Pseudomonas aeruginosa strains with different levels of the cyclic diguanozinmonophosphate. SCIENCERISE: BIOLOGICAL SCIENCE 2020. [DOI: 10.15587/2519-8025.2020.205217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Cho KH, Tryon RG, Kim JH. Screening for Diguanylate Cyclase (DGC) Inhibitors Mitigating Bacterial Biofilm Formation. Front Chem 2020. [DOI: 10.3389/fchem.2020.00264 [doi link]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Cho KH, Tryon RG, Kim JH. Screening for Diguanylate Cyclase (DGC) Inhibitors Mitigating Bacterial Biofilm Formation. Front Chem 2020; 8:264. [PMID: 32373581 PMCID: PMC7186502 DOI: 10.3389/fchem.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
The majority of bacteria in the natural environment organize themselves into communal biofilms. Biofilm formation benefits bacteria conferring resistance to harmful molecules (e.g., antibiotics, disinfectants, and host immune factors) and coordinating their gene expression through quorum sensing (QS). A primary signaling molecule promoting bacterial biofilm formation is the universal second messenger cyclic di-GMP. This dinucleotide predominantly controls the gene expression of motility, adhesins, and capsule production to coordinate biofilm formation. Cyclic di-GMP is synthesized by diguanylate cyclases (DGCs) that have a GGDEF domain and is degraded by phosphodiesterases (PDEs) containing either an EAL or an HD-GYP domain. Since high cellular c-di-GMP concentrations are correlated with promoting the ability of bacteria to form biofilms, numerous research endeavors to identify chemicals capable of inhibiting the c-di-GMP synthesis activity of DGCs have been performed in order to inhibit bacterial biofilm formation. This review describes currently identified chemical inhibitors that disturb the activity of DGCs and the methods of screening and assay for their discovery.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| | - R Grant Tryon
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| | - Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| |
Collapse
|
38
|
Froes TQ, Nicastro GG, de Oliveira Pereira T, de Oliveira Carneiro K, Alves Reis IM, Conceição RS, Branco A, Ifa DR, Baldini RL, Castilho MS. Calycopterin, a major flavonoid from Marcetia latifolia, modulates virulence-related traits in Pseudomonas aeruginosa. Microb Pathog 2020; 144:104142. [PMID: 32173496 DOI: 10.1016/j.micpath.2020.104142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 01/30/2023]
Abstract
Although bacterial resistance is a worldwide growing concern, the development of bacteriostatic and bactericidal drugs has been decreasing in the last decade. Compounds that modulate the microorganism virulence, without killing it, have been considered promising alternatives to combat bacterial infections. However, most signaling pathways that regulate virulence are complex and not completely understood. The rich chemical diversity of natural products offers a good starting point to identify key compounds that shed some light on this matter. Therefore, we investigated the role of Marcetia latifolia ethanolic extract, as well as its major constituent, calycopterin (5,4'-dihydroxy-3,6,7,8-tetramethoxylflavone), in the regulation of virulence-related phenotypes of Pseudomonas aeruginosa. Our results show that calycopterin inhibits pyocyanin production (EC50 = 32 μM), reduces motility and increases biofilm formation in a dose-dependent manner. Such biological profile suggests that calycopterin modulates targets that may act upstream the quorum sensing regulators and points to its utility as a chemical probe to further investigate P. aeruginosa transition from planktonic to sessile lifestyle.
Collapse
Affiliation(s)
- Thamires Quadros Froes
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | | | | | - Kelli de Oliveira Carneiro
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Isabella Mary Alves Reis
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Rodrigo Souza Conceição
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Alexsandro Branco
- Departmento de Saúde, Laboratorio de Fotoquímica, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Demian Rocha Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, Canada
| | - Regina Lúcia Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Santos Castilho
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia, Brazil; Faculdade de Farmácia, Universidade Federal da Bahia, Bahia, Brazil.
| |
Collapse
|
39
|
Mok N, Chan SY, Liu SY, Chua SL. Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa. Food Funct 2020; 11:6496-6508. [DOI: 10.1039/d0fo00046a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vanillin, a natural phenolic aldehyde from vanilla bean, has been reported to inhibit pqs quorum sensing in Pseudomonas aeruginosa, with potential applications in combinatorial antimicrobial therapy against biofilm infections.
Collapse
Affiliation(s)
- Nicholas Mok
- Department of Biology
- University of Waterloo
- Waterloo
- Canada
| | - Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- China
- State Key Laboratory of Chemical Biology and Drug Discovery
| |
Collapse
|
40
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 104:33-49. [DOI: 10.1007/s00253-019-10201-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
41
|
Yu M, Chua SL. Demolishing the great wall of biofilms in Gram‐negative bacteria: To disrupt or disperse? Med Res Rev 2019; 40:1103-1116. [DOI: 10.1002/med.21647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Miao Yu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
- State Key Laboratory of Chemical Biology and Drug DiscoveryThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
| | - Song Lin Chua
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
- State Key Laboratory of Chemical Biology and Drug DiscoveryThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
| |
Collapse
|
42
|
Deryabin D, Galadzhieva A, Kosyan D, Duskaev G. Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. Int J Mol Sci 2019; 20:E5588. [PMID: 31717364 PMCID: PMC6888686 DOI: 10.3390/ijms20225588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Numerous gram-negative phytopathogenic and zoopathogenic bacteria utilise acylated homoserine lactone (AHL) in communication systems, referred to as quorum sensing (QS), for induction of virulence factors and biofilm development. This phenomenon positions AHL-mediated QS as an attractive target for anti-infective therapy. This review focused on the most significant groups of plant-derived QS inhibitors and well-studied individual compounds for which in silico, in vitro and in vivo studies provide substantial knowledge about their modes of anti-QS activity. The current data about sulfur-containing compounds, monoterpenes and monoterpenoids, phenylpropanoids, benzoic acid derivatives, diarylheptanoids, coumarins, flavonoids and tannins were summarized; their plant sources, anti-QS effects and bioactivity mechanisms have also been summarized and discussed. Three variants of plant-derived molecules anti-QS strategies are proposed: (i) specific, via binding with LuxI-type AHL synthases and/or LuxR-type AHL receptor proteins, which have been shown for terpenes (carvacrol and l-carvone), phenylpropanoids (cinnamaldehyde and eugenol), flavonoid quercetin and ellagitannins; (ii) non-specific, by affecting the QS-related intracellular regulatory pathways by lowering regulatory small RNA expression (sulphur-containing compounds ajoene and iberin) or c-di-GMP metabolism reduction (coumarin); and (iii) indirect, via alteration of metabolic pathways involved in QS-dependent processes (vanillic acid and curcumin).
Collapse
Affiliation(s)
- Dmitry Deryabin
- Federal Scientific Center of Biological Systems and Agrotechnologies of RAS, Orenburg 460000, Russia; (A.G.); (D.K.); (G.D.)
| | | | | | | |
Collapse
|
43
|
Diguanylate Cyclases and Phosphodiesterases Required for Basal-Level c-di-GMP in Pseudomonas aeruginosa as Revealed by Systematic Phylogenetic and Transcriptomic Analyses. Appl Environ Microbiol 2019; 85:AEM.01194-19. [PMID: 31444209 DOI: 10.1128/aem.01194-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is an important second messenger involved in bacterial switching from motile to sessile lifestyles. In the opportunistic pathogen Pseudomonas aeruginosa, at least 40 genes are predicted to encode proteins for the making and breaking of this signal molecule. However, there is still paucity of information concerning the systemic expression pattern of these genes and the functions of uncharacterized genes. In this study, we analyzed the phylogenetic distribution of genes from P. aeruginosa that were predicted to have a GGDEF domain and found five genes (PA5487, PA0285, PA0290, PA4367, and PA5017) with highly conserved distribution across 52 public complete pseudomonad genomes. PA5487 was further characterized as a typical diguanylate cyclase (DGC) and was named dgcH A systemic analysis of the gene expression data revealed that the expression of dgcH is highly invariable and that dgcH probably functions as a conserved gene to maintain the basal level of c-di-GMP, as reinforced by gene expression analyses. The other four conserved genes also had an expression pattern similar to that of dgcH The functional analysis suggested that PA0290 encoded a DGC, while the others functioned as phosphodiesterases (PDEs). Our data revealed that there are five DGC and PDE genes that maintain the basal level of c-di-GMP in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that can cause infections in animals, humans, and plants. The formation of biofilms by P. aeruginosa is the central mode of action to persist in hosts and evade immune and antibiotic attacks. Cyclic-di-GMP (c-di-GMP) is an important second messenger involved in the regulation of biofilm formation. In P. aeruginosa PAO1 strain, there are around 40 genes that encode enzymes for making and breaking this dinucleotide. A major missing piece of information in this field is the phylogeny and expression profile of those genes. Here, we took a systemic approach to investigate this mystery. We found that among 40 c-di-GMP metabolizing genes, 5 have well-conserved phylogenetic distribution and invariable expression profiles, suggesting that there are enzymes required for the basal level of c-di-GMP in P. aeruginosa This study thus provides putative therapeutic targets against P. aeruginosa infections.
Collapse
|
44
|
Engin AB, Engin A. Nanoantibiotics: A Novel Rational Approach to Antibiotic Resistant Infections. Curr Drug Metab 2019; 20:720-741. [DOI: 10.2174/1389200220666190806142835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023]
Abstract
Background:The main drawbacks for using conventional antimicrobial agents are the development of multiple drug resistance due to the use of high concentrations of antibiotics for extended periods. This vicious cycle often generates complications of persistent infections, and intolerable antibiotic toxicity. The problem is that while all new discovered antimicrobials are effective and promising, they remain as only short-term solutions to the overall challenge of drug-resistant bacteria.Objective:Recently, nanoantibiotics (nAbts) have been of tremendous interest in overcoming the drug resistance developed by several pathogenic microorganisms against most of the commonly used antibiotics. Compared with free antibiotic at the same concentration, drug delivered via a nanoparticle carrier has a much more prominent inhibitory effect on bacterial growth, and drug toxicity, along with prolonged drug release. Additionally, multiple drugs or antimicrobials can be packaged within the same smart polymer which can be designed with stimuli-responsive linkers. These stimuli-responsive nAbts open up the possibility of creating multipurpose and targeted antimicrobials. Biofilm formation still remains the leading cause of conventional antibiotic treatment failure. In contrast to conventional antibiotics nAbts easily penetrate into the biofilm, and selectively target biofilm matrix constituents through the introduction of bacteria specific ligands. In this context, various nanoparticles can be stabilized and functionalized with conventional antibiotics. These composites have a largely enhanced bactericidal efficiency compared to the free antibiotic.Conclusion:Nanoparticle-based carriers deliver antibiotics with better biofilm penetration and lower toxicity, thus combating bacterial resistance. However, the successful adaptation of nanoformulations to clinical practice involves a detailed assessment of their safety profiles and potential immunotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Ankara, Turkey
| |
Collapse
|
45
|
Ahmed W, Tian X, Delatolla R. Nitrifying moving bed biofilm reactor: Performance at low temperatures and response to cold-shock. CHEMOSPHERE 2019; 229:295-302. [PMID: 31078886 DOI: 10.1016/j.chemosphere.2019.04.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
In contrast with suspended growth systems, attached growth technologies such as the moving bed biofilm reactors (MBBR) have recently demonstrated significant nitrification rates at temperatures as low as 1 °C. The purpose of this study was to investigate the performance of the nitrifying MBBR system at elevated municipal concentrations with exposures to low temperatures and cold-shock conditions down to 1 °C using an enhanced temperature-controlled room. A removal rate of 98.44 ± 4.69 gN·m-3·d-1 was identified as the intrinsic rate of nitrifying MBBR systems at 1 °C and was proposed as the conservative rate for low temperature design. A temperature threshold at which attached growth nitrification displayed a significant decrease in kinetics was identified between 2 °C and 4 °C. Arrhenius correction coefficients of 1.086 and 1.09 previously applied for low temperature nitrifying MBBR systems resulted in conservative modeled removal rates on average 21% lower than the measured rates. Thus, an Arrhenius correction coefficient of 1.049 is proposed between the temperatures of 10 °C and 4 °C and another correction coefficient of 1.149 to model rates at 1 °C. For the transition from 4 °C to 1 °C, the adjustment of a previously reported Theta model is proposed in this study to account for exposure time at low temperatures; with the modified model showing strong correlation with measured rates (R2 = 0.88). Finally, a comparison of nitrification kinetics between MBBR systems acclimatized to 1 °C and systems that are cold-shocked to 1 °C demonstrated that shocked removal rates are 21% lower.
Collapse
Affiliation(s)
- Warsama Ahmed
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, 161 Louis Pasteur, K1N 6N5, Canada.
| | - Xin Tian
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, 161 Louis Pasteur, K1N 6N5, Canada.
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, 161 Louis Pasteur, K1N 6N5, Canada.
| |
Collapse
|
46
|
Jacek P, Dourado F, Gama M, Bielecki S. Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotechnol 2019; 12:633-649. [PMID: 30883026 PMCID: PMC6559022 DOI: 10.1111/1751-7915.13386] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022] Open
Abstract
Bacterial nanocellulose (BNC) produced by aerobic bacteria is a biopolymer with sophisticated technical properties. Although the potential for economically relevant applications is huge, the cost of BNC still limits its application to a few biomedical devices and the edible product Nata de Coco, made available by traditional fermentation methods in Asian countries. Thus, a wider economic relevance of BNC is still dependent on breakthrough developments on the production technology. On the other hand, the development of modified strains able to overproduce BNC with new properties - e.g. porosity, density of fibres crosslinking, mechanical properties, etc. - will certainly allow to overcome investment and cost production issues and enlarge the scope of BNC applications. This review discusses current knowledge about the molecular basis of BNC biosynthesis, its regulations and, finally, presents a perspective on the genetic modification of BNC producers made possible by the new tools available for genetic engineering.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| | - Fernando Dourado
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Miguel Gama
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Stanisław Bielecki
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| |
Collapse
|
47
|
Fontaine BM, Duggal Y, Weinert EE. Exploring the Links between Nucleotide Signaling and Quorum Sensing Pathways in Regulating Bacterial Virulence. ACS Infect Dis 2018; 4:1645-1655. [PMID: 30381948 DOI: 10.1021/acsinfecdis.8b00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The survival of all organisms depends on implementation of appropriate phenotypic responses upon perception of relevant environmental stimuli. Sensory inputs are propagated via interconnected biochemical and/or electrical cascades mediated by diverse signaling molecules, including gases, metal cations, lipids, peptides, and nucleotides. These networks often comprise second messenger signaling systems in which a ligand (the primary messenger) binds to an extracellular receptor, thereby altering the intracellular concentration of a second messenger molecule which ultimately modulates gene expression through interaction with various effectors. The identification of intersections of these signaling pathways, such as nucleotide second messengers and quorum sensing, provides new insights into the mechanisms by which bacteria use multiple inputs to regulate cellular metabolism and phenotypes. Further investigations of the overlap between bacterial signaling pathways may yield new targets and methods to control bacterial behavior, such as biofilm formation and virulence.
Collapse
Affiliation(s)
- Benjamin M. Fontaine
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yashasvika Duggal
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Emily E. Weinert
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
48
|
Pusic P, Sonnleitner E, Krennmayr B, Heitzinger DA, Wolfinger MT, Resch A, Bläsi U. Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pseudomonas aeruginosa. Front Microbiol 2018; 9:2709. [PMID: 30473687 PMCID: PMC6237836 DOI: 10.3389/fmicb.2018.02709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for ~ 10% of hospital-acquired infections worldwide. It is notorious for its high level resistance toward many antibiotics, and the number of multi-drug resistant clinical isolates is steadily increasing. A better understanding of the molecular mechanisms underlying drug resistance is crucial for the development of novel antimicrobials and alternative strategies such as enhanced sensitization of bacteria to antibiotics in use. In P. aeruginosa several uptake channels for amino-acids and carbon sources can serve simultaneously as entry ports for antibiotics. The respective genes are often controlled by carbon catabolite repression (CCR). We have recently shown that Hfq in concert with Crc acts as a translational repressor during CCR. This function is counteracted by the regulatory RNA CrcZ, which functions as a decoy to abrogate Hfq-mediated translational repression of catabolic genes. Here, we report an increased susceptibility of P. aeruginosa hfq deletion strains to different classes of antibiotics. Transcriptome analyses indicated that Hfq impacts on different mechanisms known to be involved in antibiotic susceptibility, viz import and efflux, energy metabolism, cell wall and LPS composition as well as on the c-di-GMP levels. Furthermore, we show that sequestration of Hfq by CrcZ, which was over-produced or induced by non-preferred carbon-sources, enhances the sensitivity toward antibiotics. Thus, controlled synthesis of CrcZ could provide a means to (re)sensitize P. aeruginosa to different classes of antibiotics.
Collapse
Affiliation(s)
- Petra Pusic
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Beatrice Krennmayr
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Dorothea A. Heitzinger
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Armin Resch
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus. mBio 2018; 9:mBio.00585-18. [PMID: 30401769 PMCID: PMC6222129 DOI: 10.1128/mbio.00585-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria in natural and engineered environments form biofilms that include many different species. Microorganisms rely on a number of different strategies to manage social interactions with other species and to access resources, build biofilm consortia, and optimize growth. For example, Pseudomonas aeruginosa and Staphylococcus aureus are biofilm-forming bacteria that coinfect the lungs of cystic fibrosis patients and diabetic and chronic wounds. P. aeruginosa is known to antagonize S. aureus growth. However, many of the factors responsible for mixed-species interactions and outcomes such as infections are poorly understood. Biofilm bacteria are encased in a self-produced extracellular matrix that facilitates interspecies behavior and biofilm development. In this study, we examined the poorly understood roles of the major matrix biopolymers and their regulators in mixed-species biofilm interactions and development. Mixed-species biofilms display a number of emergent properties, including enhanced antimicrobial tolerance and communal metabolism. These properties may depend on interspecies relationships and the structure of the biofilm. However, the contribution of specific matrix components to emergent properties of mixed-species biofilms remains poorly understood. Using a dual-species biofilm community formed by the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus, we found that whilst neither Pel nor Psl polysaccharides, produced by P. aeruginosa, affect relative species abundance in mature P. aeruginosa and S. aureus biofilms, Psl production is associated with increased P. aeruginosa abundance and reduced S. aureus aggregation in the early stages of biofilm formation. Our data suggest that the competitive effect of Psl is not associated with its structural role in cross-linking the matrix and adhering to P. aeruginosa cells but is instead mediated through the activation of the diguanylate cyclase SiaD. This regulatory control was also found to be independent of the siderophore pyoverdine and Pseudomonas quinolone signal, which have previously been proposed to reduce S. aureus viability by inducing lactic acid fermentation-based growth. In contrast to the effect mediated by Psl, Pel reduced the effective crosslinking of the biofilm matrix and facilitated superdiffusivity in microcolony regions. These changes in matrix cross-linking enhance biofilm surface spreading and expansion of microcolonies in the later stages of biofilm development, improving overall dual-species biofilm growth and increasing biovolume severalfold. Thus, the biofilm matrix and regulators associated with matrix production play essential roles in mixed-species biofilm interactions.
Collapse
|
50
|
Characterization of a novel regulatory pathway for mannitol metabolism and its coordination with biofilm formation in Mycobacterium smegmatis. J Genet Genomics 2018; 45:477-488. [DOI: 10.1016/j.jgg.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023]
|