1
|
Ayala A, Llanes A, Lleonart R, Restrepo CM. Advances in Leishmania Vaccines: Current Development and Future Prospects. Pathogens 2024; 13:812. [PMID: 39339003 PMCID: PMC11435054 DOI: 10.3390/pathogens13090812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania. As approved human vaccines are not available, treatment and prevention rely heavily on toxic chemotherapeutic agents, which face increasing resistance problems. The development of effective vaccines against human leishmaniasis is of utmost importance for the control of the disease. Strategies that have been considered for this purpose range from whole-killed and attenuated parasites to recombinant proteins and DNA vaccines. The ideal vaccine must be safe and effective, ensuring lasting immunity through a robust IL-12-driven Th1 adaptive immune response. Despite some success and years of effort, human vaccine trials have encountered difficulties in conferring durable protection against Leishmania, a problem that may be attributed to the parasite's antigenic diversity and the intricate nature of the host's immune response. The aim of this review is to provide a thorough overview of recent advances in Leishmania vaccine development, ranging from initial trials to recent achievements, such as the ChAd63-KH DNA vaccine, which underscores the potential for effective control of leishmaniasis through continued research in this field.
Collapse
Affiliation(s)
- Andreina Ayala
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 0843-01103, Panama
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 0843-01103, Panama
- Sistema Nacional de Investigación (SNI), Panama City 0801, Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 0843-01103, Panama
- Sistema Nacional de Investigación (SNI), Panama City 0801, Panama
| | - Carlos M Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 0843-01103, Panama
- Sistema Nacional de Investigación (SNI), Panama City 0801, Panama
| |
Collapse
|
2
|
Rahmatian N, Abbasi S, Abbasi N, Tavakkoli Yaraki M. Green-synthesized chitosan‑carbon dot nanocomposite as turn-on aptasensor for detection and quantification of Leishmania infantum parasite. Int J Biol Macromol 2024; 270:132483. [PMID: 38763252 DOI: 10.1016/j.ijbiomac.2024.132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Leishmania is one of the most common diseases between human and animals, caused by Leishmania infantum parasite. Here, we have developed an ultra-selective turn-on fluorescent probe based on an aptamer and Chitosan-CD nanocomposite. The CD used in this study were synthesized using Quercus cap extract and a microwave-assisted approach. The Chitosan-CD nanocomposite was optimized using several microscopic and spectroscopic techniques to possess a bright fluorescence emission before adding aptamer and totally quenched fluorescence after addition of aptamer. The designed probe was proficient in the detection and quantification Leishmania infantum parasite by selective targeting of poly(A) binding protein (PABP) on the surface of the parasite. The designed fluorescent biosensor with high sensitivity, excellent selectivity, and a limit of detection (LOD) of 94 cells/mL of the Leishmania infantum parasite as well as a linear response in the ranges of 188-750 cells/mL and 3000-6000 cells/mL (R2 ≥ 0.98 for both linear ranges). Additionally, the selectivity of the designed probe was evaluated in the presence of different pathogenic species such as Trypanosoma brucei parasite and Staphylococcus aureus bacteria, as well as LiIF2α and LiP2a and BSA proteins as interference substances. The results of this study shows that using Chitosan-CD nanocomposite is a great strategy for developing selective turn-on probes with extraordinary accuracy and sensitivity in identifying Leishmania infantum parasite, especially in the early stages of the disease, and it is promising for the future clinical applications.
Collapse
Affiliation(s)
| | | | - Naser Abbasi
- Department of Pharmacology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
3
|
da Silva BB, da Silva Junior AB, Araújo LDS, Santos ENFN, da Silva ACM, Florean EOPT, van Tilburg MF, Guedes MIF. Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response. Trop Med Infect Dis 2023; 8:444. [PMID: 37755905 PMCID: PMC10534909 DOI: 10.3390/tropicalmed8090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Visceral leishmaniasis is a high-burden disease caused by parasites of the Leishmania genus. The K39 kinesin is a highly antigenic protein of Leishmania infantum, but little is known about the immune response elicited by this antigen. We evaluated the humoral immune response of female BALB/c mice (n = 6) immunized with the rK39-HFBI construct, formed by the fusion of the K39 antigen to a hydrophobin partner. The rK39-HFBI construct was administered through subcutaneous, oral, and intranasal routes using saponin as an adjuvant. We analyzed the kinetics of IgG, IgG1, and IgG2a production. The groups were then challenged by an intravenous infection with L. infantum promastigote cells. The rK39-HFBI antigen-induced high levels of total IgG (p < 0.05) in all groups, but only the subcutaneous route was associated with increased production of IgG1 and IgG2a 42 days after immunization (p < 0.05), suggesting a potential secondary immune response following the booster dose. There was no reduction in the splenic parasite load; thus, the rK39-HFBI failed to protect the mice against infection under the tested conditions. The results presented here demonstrate that the high antigenicity of the K39 antigen does not contribute to a protective immune response against visceral leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Izabel Florindo Guedes
- Laboratory of Biotechnology and Molecular Biology, Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza 60714903, Brazil
| |
Collapse
|
4
|
Sun L, Lu Y, Zhao N, Wang Y, Wang B, Li H, Wu Z, Li H, Zhang X, Zhao X. Construction of constitutive expression of Eimeria tenella eukaryotic initiation factor U6L5H2 on the surface of Lactobacillus plantarum and evaluation of its immunoprotective efficiency against chicken coccidiosis. Mol Biochem Parasitol 2022; 252:111527. [PMID: 36272440 DOI: 10.1016/j.molbiopara.2022.111527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 12/31/2022]
Abstract
Lactobacillus strains exhibit preferable properties that make them attractive candidates for vaccine delivery systems because of their ability to regulate intestinal mucosal immunity in the body. To date, live Lactobacillus delivery vaccines reported for the defense against Eimeria tenella have been inducer-dependent systems whose applications are significantly limited due to their unattainable induction conditions in vivo. Here, a constitutive expression of Lactobacillus plantarum NC8 surface display system was constructed. Then, this system was used to prepare a live oral vaccine to constitutively express the E. tenella U6L5H2 (EtU6) protein on the NC8 surface and to evaluate its protective efficacy against E. tenella challenge in chickens. The results showed that the heterologous protein (EGFP or EtU6) was successfully expressed on the surface of L. plantarum NC8 without any inducer. The immunoprotection of EtU6 with constitutive expression in L. plantarum NC8 system (NC8/Pc-EtU6) was significantly stronger than that of EtU6 with induced expression of L. plantarum NC8 system (NC8/Pi-EtU6) (ACI: 168.28 vs. 152.74) as evidenced by increased body weight, decreased oocyst output and lesion scores. Furthermore, the constitutive system NC8/Pc-EtU6 produced higher levels of specific cecal SIgA, serum IgG, transcription of cytokines IFN-γ and IL-2, and lymphocyte proliferation than the induced system NC8/Pi-EtU6. These results indicate that, compared to the inducible system, the constitutive surface display system of L. plantarum has the advantages of continuously expressing antigens in vivo and stimulating the host immune system. It could be an ideal platform for vaccine expression. The live vector vaccine for coccidiosis constructed by this constitutive system greatly improves the application potential in chicken production and provides a novel platform for the prevention of coccidiosis in chickens.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yakun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Bingxiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Huihui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Zhiyuan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
5
|
Preclinical Assessment of the Immunogenicity of Experimental Leishmania Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:481-502. [PMID: 34914064 DOI: 10.1007/978-1-0716-1884-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Leishmaniases are neglected diseases caused by Leishmania parasites and affect millions of people worldwide. The induction of protective immunity against infection by some species of Leishmania has stimulated the development of vaccine candidates against the disease. In this chapter we describe protocols for immunizing mice with a recombinant chimera vaccine containing selected epitopes that specifically stimulate a Th1-type immune response. We describe protocols for challenging mice with live Leishmania parasite and for measuring parameters of the immune response to vaccination and parasite infection, including the production of cytokines, nitric oxide, and IgG antibodies, and the contribution of CD4+ and CD8+ T cells. We also provide protocols for isolating mouse organs for cell culture and for quantifying parasite loads in unvaccinated control animals and in vaccine-protected animals. These protocols can form the basis of immunological studies of candidate Leishmania vaccines in the mouse, as a step toward further vaccine development for human use.
Collapse
|
6
|
Leishmania eukaryotic elongation Factor-1 beta protein is immunogenic and induces parasitological protection in mice against Leishmania infantum infection. Microb Pathog 2021; 151:104745. [PMID: 33485994 DOI: 10.1016/j.micpath.2021.104745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022]
Abstract
Treatment for visceral leishmaniasis (VL) is hampered mainly by the toxicity and/or high cost of antileishmanial drugs. What is more, variability on sensitivity and/or specificity of diagnostic tests hinders effective disease management. In this context, prophylactic vaccination should be considered as a strategy to prevent disease. In the present study, immunogenicity of the Leishmania eukaryotic Elongation Factor-1 beta (EF1b) protein, classified as a Leishmania virulence factor, was evaluated in vitro and in vivo and tested, for the first time, as a vaccine candidate against Leishmania infantum infection. The antigen was administered as DNA vaccine or as recombinant protein (rEF1b) delivered in saponin. BALB/c mice immunization with a DNA plasmid and recombinant protein plus saponin induced development of specific Th1-type immunity, characterized by high levels of IFN-γ, IL-12, GM-CSF, both T cell subtypes and antileishmanial IgG2a isotype antibodies, before and after infection. This immunological response to the vaccines was corroborated further by parasitological analysis of the vaccinated and then challenged mice, which showed significant reductions in the parasite load in their liver, spleen, bone marrow and draining lymph nodes, when compared to the controls. Vaccination using rEF1b/saponin induced a more robust Th1 response and parasitological protection when compared to the DNA vaccine. Furthermore, in vitro analysis of lymphoproliferation, IFN-γ and IL-10 levels in human PBMC cultures showed as well development of a specific Th1-type response. In conclusion, data suggest that EF1b could be a promising vaccine candidate to protect against L. infantum infection.
Collapse
|
7
|
A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. NPJ Vaccines 2020; 5:75. [PMID: 32821440 PMCID: PMC7426426 DOI: 10.1038/s41541-020-00224-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Abstract
Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are currently no prophylactic vaccines. In this study, we designed in silico a synthetic recombinant vaccine against visceral leishmaniasis (VL) called ChimeraT, which contains specific T-cell epitopes from Leishmania Prohibitin, Eukaryotic Initiation Factor 5a and the hypothetical LiHyp1 and LiHyp2 proteins. Subcutaneous delivery of ChimeraT plus saponin stimulated a Th1 cell-mediated immune response and protected mice against L. infantum infection, significantly reducing the parasite load in distinct organs. ChimeraT/saponin vaccine stimulated significantly higher levels of IFN-γ, IL-12, and GM-CSF cytokines by both murine CD4+ and CD8+ T cells, with correspondingly low levels of IL-4 and IL-10. Induced antibodies were predominantly IgG2a isotype and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide. ChimeraT also induced lymphoproliferative responses in peripheral blood mononuclear cells from VL patients after treatment and healthy subjects, as well as higher IFN-γ and lower IL-10 secretion into cell supernatants. Thus, ChimeraT associated with a Th1 adjuvant could be considered as a potential vaccine candidate to protect against human disease.
Collapse
|
8
|
Ramírez L, de Moura LD, Mateus NLF, de Moraes MH, do Nascimento LFM, de Jesus Melo N, Taketa LB, Catecati T, Huete SG, Penichet K, Piranda EM, de Oliveira AG, Steindel M, Barral-Netto M, do Socorro Pires e Cruz M, Barral A, Soto M. Improving the serodiagnosis of canine Leishmania infantum infection in geographical areas of Brazil with different disease prevalence. Parasite Epidemiol Control 2020; 8:e00126. [PMID: 31832561 PMCID: PMC6890974 DOI: 10.1016/j.parepi.2019.e00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/19/2019] [Indexed: 01/31/2023] Open
Abstract
Serodiagnosis of Leishmania infantum infection in dogs relies on the detection of antibodies against leishmanial crude extracts or parasitic defined antigens. The expansion of canine leishmaniasis from geographical areas of Brazil in which the infection is endemic to regions in which the disease is emerging is occurring. This fact makes necessary the analysis of the serodiagnostic capabilities of different leishmanial preparations in distinct geographical locations. In this article sera from dogs infected with Leishmania and showing the clinical form of the disease, were collected in three distinct Brazilian States and were tested against soluble leishmanial antigens or seven parasite individual antigens produced as recombinant proteins. We show that the recognition of soluble leishmanial antigens by sera from these animals was influenced by the geographical location of the infected dogs. Efficacy of the diagnosis based on this crude parasite preparation was higher in newly endemic regions when compared with areas of high disease endemicity. We also show that the use of three of the recombinant proteins, namely parasite surface kinetoplastid membrane protein of 11 kDa (KMP-11), and two members of the P protein family (P2a and P0), can improve the degree of sensitivity without adversely affecting the specificity of the diagnostic assays for canine leishmaniasis, independently of the geographical area of residence. In addition, sera from dogs clinically healthy but infected were also assayed with some of the antigen preparations. We demonstrate that the use of these proteins can help to the serodiagnosis of Leishmania infected animals with subclinical infections. Finally, we propose a diagnostic protocol using a combination of KMP-11, P2a y P0, together with total leishmanial extracts.
Collapse
Key Words
- Antibodies
- BB, blocking buffer
- CanL, Canine visceral leishmaniasis
- Canine leishmaniasis
- EDCB, ELISA denaturant coating buffer
- ELISA, enzyme-linked immunosorbent assay
- HSP, Heat shock protein
- KMP-11, Kinetoplastid-membrane protein of 11 kDa
- LR, Likelihood ratio
- Leishmania
- MS, Mato Grosso do Sul State (Brazil)
- PBS, phosphate saline buffer
- PI, Piaui State (Brazil)
- ROC, Receiver Operating Characteristic
- RR, Relative reactivity
- RT, Room temperature
- Recombinant proteins
- SC, Santa Catarina State (Brazil)
- SLA, Soluble leishmanial antigen
- Serodiagnosis
- VL, Visceral leishmaniosis
- WB, Washing buffer
Collapse
Affiliation(s)
- Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Departamento de Biología Molecular, Facultad de Ciencias, CSIC-UAM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luana Dias de Moura
- Centro de Ciências Agrárias, Universidade Federal do Piaui (UFPI), Teresina, 64049-550 PI, Brazil
| | - Natalia Lopes Fontoura Mateus
- Laboratório de Parasitologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, s/n, Campo Grande 79070-900 MS, Brazil
| | - Milene Hoehr de Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900 SC, Brazil
| | | | - Nailson de Jesus Melo
- Centro de Ciências Agrárias, Universidade Federal do Piaui (UFPI), Teresina, 64049-550 PI, Brazil
| | - Lucas Bezerra Taketa
- Laboratório de Parasitologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, s/n, Campo Grande 79070-900 MS, Brazil
| | - Tatiana Catecati
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900 SC, Brazil
| | - Samuel G. Huete
- Centro de Biología Molecular Severo Ochoa (CBMSO), Departamento de Biología Molecular, Facultad de Ciencias, CSIC-UAM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Karla Penichet
- Centro de Biología Molecular Severo Ochoa (CBMSO), Departamento de Biología Molecular, Facultad de Ciencias, CSIC-UAM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eliane Mattos Piranda
- Laboratório de Parasitologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, s/n, Campo Grande 79070-900 MS, Brazil
| | - Alessandra Gutierrez de Oliveira
- Laboratório de Parasitologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, s/n, Campo Grande 79070-900 MS, Brazil
| | - Mario Steindel
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900 SC, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz- FIOCRUZ). Waldemar Falcão, 121, Salvador 40296-710 BA, Brazil
| | | | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz- FIOCRUZ). Waldemar Falcão, 121, Salvador 40296-710 BA, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CBMSO), Departamento de Biología Molecular, Facultad de Ciencias, CSIC-UAM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Singh G, Pritam M, Banerjee M, Singh AK, Singh SP. Genome based screening of epitope ensemble vaccine candidates against dreadful visceral leishmaniasis using immunoinformatics approach. Microb Pathog 2019; 136:103704. [PMID: 31479726 DOI: 10.1016/j.micpath.2019.103704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Accepted: 08/31/2019] [Indexed: 01/09/2023]
Abstract
Visceral leishmaniasis (VL) is a dreadful protozoan disease caused by Leishmania donovani that severely affects huge populations in tropical and sub-tropical regions. The present study reports an unbiased genome based screening of 4 potent vaccine antigens against 8023 L. donovani proteins by following the criteria of presence of signal peptides, GPI-anchors and ≤1 transmembrane helix using advanced bioinformatics tools viz. SignalP4.0, PredGPI and TMHMM2.0, respectively. They are designated as genome based predicted signal peptide antigens (GBPSPA). The antigenicity/immunogenicity of chosen vaccine antigens (GBPSPA) with 4 randomly selected known leishmanial antigens (RSKLA) was compared by simulation study employing C-ImmSim software for human immune responses. This revealed better immunological responses. These antigens were further evaluated for the presence of B- and T-cell epitopes using immune epitope database (IEDB) based recommended consensus method of MHC class I and II tools. It was found to forecast CD4+ and CD8+ T-cell responses in genetically diverse human population worldwide as well as different endemic regions through IEDB based predicted population coverage (PPC) analysis tool. The worldwide percent PPC value of combined (HLA class I and II) epitope ensemble forecast was found to be 99.98, 99.96 and 50.04, respectively for GBPSPA, RSKLA and experimentally known epitopes (EKE) of L. donovani. Therefore, these potential antigens/epitope ensembles could favor the design of prospective and novel vaccine constructs like self-assembled epitopes as nano vaccine formulations against VL. Overall, the present study will serve as a model framework that might improve the effectiveness of designed vaccine against L. donovani and other related pathogens.
Collapse
Affiliation(s)
- Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India.
| | - Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India.
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow- 226007, India.
| | - Akhilesh Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India.
| | - Satarudra Prakash Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India; Department of Biotech and Genome, School of Life Sciences, Mahatma Gandhi Central University, Motihari-845401, India.
| |
Collapse
|
10
|
Diagnostic application of recombinant Leishmania proteins and evaluation of their in vitro immunogenicity after stimulation of immune cells collected from tegumentary leishmaniasis patients and healthy individuals. Cell Immunol 2018; 334:61-69. [PMID: 30287082 DOI: 10.1016/j.cellimm.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
The present study evaluated the cytokine profile in PBMC supernatants and the humoral response in mucosal leishmaniasis (ML) patients and in healthy subjects living in an endemic area. Four proteins, which had previously proven to be antigenic in the human disease, were tested: LiHyM, enolase, eukaryotic initiation factor 5a, and Beta-tubulin. Results showed that all of the proteins stimulated human cells with higher IFN-γ and lower IL-4 and IL-10 levels. The analysis of antibody isotypes correlated with cell response, since the IgG2 production was higher than IgG1 in both groups. By contrast, a Th2 response was found when an antigenic Leishmania extract was used. Serological analyses revealed high sensitivity and specificity values for the serodiagnosis of the disease, when compared to the data obtained using the antigenic preparation. In conclusion, this study presents new candidates to be evaluated as biomarkers in tegumentary leishmaniasis.
Collapse
|
11
|
High-through identification of T cell-specific phage-exposed mimotopes using PBMCs from tegumentary leishmaniasis patients and their use as vaccine candidates against Leishmania amazonensis infection. Parasitology 2018; 146:322-332. [PMID: 30198459 DOI: 10.1017/s0031182018001403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the current study, phage-exposed mimotopes as targets against tegumentary leishmaniasis (TL) were selected by means of bio-panning cycles employing sera of TL patients and healthy subjects, besides the immune stimulation of peripheral blood mononuclear cells (PBMCs) collected from untreated and treated TL patients and healthy subjects. The clones were evaluated regarding their specific interferon-γ (IFN-γ) and interleukin-4 (IL-4) production in the in vitro cultures, and selectivity and specificity values were calculated, and those presenting the best results were selected for the in vivo experiments. Two clones, namely A4 and A8, were identified and used in immunization protocols from BALB/c mice to protect against Leishmania amazonensis infection. Results showed a polarized Th1 response generated after vaccination, being based on significantly higher levels of IFN-γ, IL-2, IL-12, tumour necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF); which were associated with lower production of specific IL-4, IL-10 and immunoglobulin G1 (IgG1) antibodies. Vaccinated mice presented significant reductions in the parasite load in the infected tissue and distinct organs, when compared with controls. In conclusion, we presented a strategy to identify new mimotopes able to induce Th1 response in PBMCs from TL patients and healthy subjects, and that were successfully used to protect against L. amazonensis infection.
Collapse
|