1
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
2
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Alon D, Paitan Y, Robinson E, Ganor N, Lipovetsky J, Yerushalmi R, Cohen CJ, Raiter A. Downregulation of CD45 Signaling in COVID-19 Patients Is Reversed by C24D, a Novel CD45 Targeting Peptide. Front Med (Lausanne) 2021; 8:675963. [PMID: 34414199 PMCID: PMC8369232 DOI: 10.3389/fmed.2021.675963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
CD45, the predominant transmembrane tyrosine phosphatase in leukocytes, is required for the efficient induction of T cell receptor signaling and activation. We recently reported that the CD45-intracellular signals in peripheral blood mononuclear cells (PBMCs) of triple negative breast cancer (TNBC) patients are inhibited. We also reported that C24D, an immune modulating therapeutic peptide, binds to CD45 on immune-suppressed cells and resets the functionality of the immune system via the CD45 signaling pathway. Various studies have demonstrated that also viruses can interfere with the functions of CD45 and that patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are immune-suppressed. Given the similarity between the role of CD45 in viral immune suppression and our findings on TNBC, we hypothesized that the C24D peptide may have a similar "immune-resetting" effect on PBMCs from COVID-19 patients as it did on PBMCs from TNBC patients. We tested this hypothesis by comparing the CD45/TCR intracellular signaling in PBMCs from ten COVID-19 patients vs. PBMCs from ten healthy volunteers. Herein, we report our findings, demonstrating the immune reactivating effect of C24D via the phosphorylation of the tyrosine 505 and 394 in Lck, the tyrosine 493 in ZAP-70 and the tyrosine 172 in VAV-1 proteins in the CD45 signaling pathway. Despite the relatively small number of patients in this report, the results demonstrate that C24D rescued CD45 signaling. Given the central role played by CD45 in the immune system, we suggest CD45 as a potential therapeutic target.
Collapse
Affiliation(s)
- Danny Alon
- Department of Medicine A, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Paitan
- Microbiology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Eyal Robinson
- Department of Medicine B, Meir Medical Center, Kfar Saba, Israel
| | - Nirit Ganor
- Microbiology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Julia Lipovetsky
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Rinat Yerushalmi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Cyrille J. Cohen
- Laboratory of Tumor Immunotherapy, The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Annat Raiter
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
- *Correspondence: Annat Raiter ;
| |
Collapse
|
4
|
Lactic Acid and an Acidic Tumor Microenvironment suppress Anticancer Immunity. Int J Mol Sci 2020; 21:ijms21218363. [PMID: 33171818 PMCID: PMC7664620 DOI: 10.3390/ijms21218363] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/18/2023] Open
Abstract
Immune evasion and altered metabolism, where glucose utilization is diverted to increased lactic acid production, are two fundamental hallmarks of cancer. Although lactic acid has long been considered a waste product of this alteration, it is now well accepted that increased lactic acid production and the resultant acidification of the tumor microenvironment (TME) promotes multiple critical oncogenic processes including angiogenesis, tissue invasion/metastasis, and drug resistance. We and others have hypothesized that excess lactic acid in the TME is responsible for suppressing anticancer immunity. Recent studies support this hypothesis and provide mechanistic evidence explaining how lactic acid and the acidic TME impede immune cell functions. In this review, we consider lactic acid’s role as a critical immunoregulatory molecule involved in suppressing immune effector cell proliferation and inducing immune cell de-differentiation. This results in the inhibition of antitumor immune responses and the activation of potent, negative regulators of innate and adaptive immune cells. We also consider the role of an acidic TME in suppressing anticancer immunity. Finally, we provide insights to help translate this new knowledge into impactful anticancer immune therapies.
Collapse
|
5
|
Rosa RL, Berger M, Santi L, Driemeier D, Barros Terraciano P, Campos AR, Guimarães JA, Vainstein MH, Yates JR, Beys-da-Silva WO. Proteomics of Rat Lungs Infected by Cryptococcus gattii Reveals a Potential Warburg-like Effect. J Proteome Res 2019; 18:3885-3895. [PMID: 31502459 DOI: 10.1021/acs.jproteome.9b00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cryptococcus gattii is the causative agent of cryptococcosis infection that can lead to pneumonia and meningitis in immunocompetent individuals. The molecular basis of the pathogenic process and impact on the host biochemistry are poorly understood and remain largely unknown. In this context, a comparative proteomic analysis was performed to investigate the response of the host during an infection caused by C. gattii. Lungs of experimentally infected rats were analyzed by shotgun proteomics to identify differentially expressed proteins induced by C. gattii clinical strain. The proteomic results were characterized using bioinformatic tools, and subsequently, the molecular findings were validated in cell culture and lungs of infected animals. A dramatic change was observed in protein expression triggered by C. gattii infection, especially related to energy metabolism. The main pathways affected include aerobic glycolysis cycle, TCA cycle, and pyrimidine and purine metabolism. Analyses in human lung fibroblast cells confirmed the altered metabolic status found in infected lungs. Thus, it is clear that C. gattii infection triggers important changes in energy metabolism leading to the activation of glycolysis and lactate accumulation in lung cells, culminating in a cancerlike metabolic status known as the Warburg effect. The results presented here provide important insights to better understand C. gattii molecular pathogenesis.
Collapse
Affiliation(s)
- Rafael L Rosa
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90040-060 , Brazil.,Centro de Pesquisa Experimental, Laboratório de Bioquímica Farmacológica , Hospital de Clínicas de Porto Alegre (UFRGS) , Porto Alegre , RS 90035-007 , Brazil.,Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90610-000 , Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Laboratório de Bioquímica Farmacológica , Hospital de Clínicas de Porto Alegre (UFRGS) , Porto Alegre , RS 90035-007 , Brazil
| | - Lucélia Santi
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90040-060 , Brazil.,Centro de Pesquisa Experimental, Laboratório de Bioquímica Farmacológica , Hospital de Clínicas de Porto Alegre (UFRGS) , Porto Alegre , RS 90035-007 , Brazil.,Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90610-000 , Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 91540-000 , Brazil
| | - Paula Barros Terraciano
- Centro de Pesquisa Experimental, Laboratório de Bioquímica Farmacológica , Hospital de Clínicas de Porto Alegre (UFRGS) , Porto Alegre , RS 90035-007 , Brazil
| | - Alexandre R Campos
- Proteomics Core , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , California 92037 , United States
| | - Jorge A Guimarães
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90040-060 , Brazil.,Centro de Pesquisa Experimental, Laboratório de Bioquímica Farmacológica , Hospital de Clínicas de Porto Alegre (UFRGS) , Porto Alegre , RS 90035-007 , Brazil
| | - Marilene H Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90040-060 , Brazil
| | - John R Yates
- Departments of Chemical Physiology and Molecular and Cellular Neuroscience , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Walter O Beys-da-Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90040-060 , Brazil.,Centro de Pesquisa Experimental, Laboratório de Bioquímica Farmacológica , Hospital de Clínicas de Porto Alegre (UFRGS) , Porto Alegre , RS 90035-007 , Brazil.,Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS 90610-000 , Brazil
| |
Collapse
|
6
|
Lebelo MT, Joubert AM, Visagie MH. Warburg effect and its role in tumourigenesis. Arch Pharm Res 2019; 42:833-847. [PMID: 31473944 DOI: 10.1007/s12272-019-01185-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022]
Abstract
Glucose is a crucial molecule in energy production and produces different end products in non-tumourigenic- and tumourigenic tissue metabolism. Tumourigenic cells oxidise glucose by fermentation and generate lactate and adenosine triphosphate even in the presence of oxygen (Warburg effect). The Na+/H+-antiporter is upregulated in tumourigenic cells resulting in release of lactate- and H+ ions into the extracellular space. Accumulation of lactate- and proton ions in the extracellular space results in an acidic environment that promotes invasion and metastasis. Otto Warburg reported that tumourigenic cells have defective mitochondria that produce less energy. However, decades later it became evident that these mitochondria have adapted with alterations in mitochondrial content, structure, function and activity. Mitochondrial biogenesis and mitophagy regulate the formation of new mitochondria and degradation of defective mitochondria in order to combat accumulation of mutagenic mitochondrial deoxyribonucleic acid. Tumourigenic cells also produce increase reactive oxygen species (ROS) resulting from upregulated glycolysis leading to pathogenesis including cancer. Moderate ROS levels exert proliferative- and prosurvival signaling, while high ROS quantities induce cell death. Understanding the crosstalk between aberrant metabolism, redox regulation, mitochondrial adaptions and pH regulation provides scientific- and medical communities with new opportunities to explore cancer therapies.
Collapse
Affiliation(s)
- Maphuti T Lebelo
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Anna M Joubert
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Michelle H Visagie
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
| |
Collapse
|