1
|
Zhang L, Wang HL, Zhang YF, Mao XT, Wu TT, Huang ZH, Jiang WJ, Fan KQ, Liu DD, Yang B, Zhuang MH, Huang GM, Liang Y, Zhu SJ, Zhong JY, Xu GY, Li XM, Cao Q, Li YY, Jin J. Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. Cell Metab 2025; 37:87-103.e10. [PMID: 39366386 DOI: 10.1016/j.cmet.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a common and chronic gastrointestinal disorder that is characterized by abdominal discomfort and occasional diarrhea. The pathogenesis of IBS-D is thought to be related to a combination of factors, including psychological stress, abnormal muscle contractions, and inflammation and disorder of the gut microbiome. However, there is still a lack of comprehensive analysis of the logical regulatory correlation among these factors. In this study, we found that stress induced hyperproduction of xanthine and altered the abundance and metabolic characteristics of Lactobacillus murinus in the gut. Lactobacillus murinus-derived spermidine suppressed the basal expression of type I interferon (IFN)-α in plasmacytoid dendritic cells by inhibiting the K63-linked polyubiquitination of TRAF3. The reduction in IFN-α unrestricted the contractile function of colonic smooth muscle cells, resulting in an increase in bowel movement. Our findings provided a theoretical basis for the pathological mechanism of, and new drug targets for, stress-exposed IBS-D.
Collapse
Affiliation(s)
- Li Zhang
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Hao-Li Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Fang Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Tao Mao
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ting-Ting Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Zhi-Hui Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Wan-Jun Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ke-Qi Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan-Dan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei-Hui Zhuang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Ming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang-Yan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Ouyang L, Liu T, He Y, He Y, Xu W, Deng G, Deng G, Xiao X. A multi-omics study reveals the therapeutic effect of Linderae Radix water extract on irritable bowel syndrome (IBS-D). JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118050. [PMID: 38518966 DOI: 10.1016/j.jep.2024.118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Linderae Radix (Lindera aggregata (Sims) Kosterm) is a traditional Chinese medicine known for its capability to regulate qi and relieve pain, particularly in the context of gastrointestinal disorders. AIM OF THE STUDY While our previous research has demonstrated the efficacy of the Linderae Radix water extract (LRWE) in the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), the precise mechanisms remain elusive. This study aims to provide a comprehensive understanding of the therapeutic effects of LRWE on IBS-D through multi-omics techniques. MATERIALS AND METHODS 16 S rRNA gene sequencing combined with LC-MS metabolomics was employed to investigate the effect of LRWE on the gut microbiota and metabolites of IBS-D rats. Spearman correlation analysis was performed on the gut microbiota and metabolites. RESULTS LRWE administration significantly ameliorated IBS-D rats' symptoms, including diarrhea, visceral hypersensitivity, and low-grade intestinal inflammation. Gut microbiota analysis revealed that LRWE influenced the diversity of the gut microbiota in IBS-D rats by significantly reducing the relative abundance of Patescibacteria and Candidatus Saccharimonas, while increasing the relative abundance of Jeotgalicoccus. Serum metabolomic analysis identified 16 differential metabolites, associated with LRWE's positive effects on IBS-D symptoms, focusing on glyoxylate and dicarboxylic acid metabolism, and cysteine and methionine metabolism. Spearman analysis demonstrated a strong correlation between cecal microbiota composition and serum metabolite levels. CONCLUSIONS This study elucidates that LRWE plays a crucial role in the comprehensive therapeutic approach to IBS-D by restoring the relative abundance of gut microbiota and addressing the disturbed metabolism of endogenous biomarkers. The identified bacteria and metabolites present potential therapeutic targets for IBS-D.
Collapse
Affiliation(s)
- Linqi Ouyang
- First Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, PR China; School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, PR China.
| | - Tao Liu
- First Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, PR China.
| | - Yang He
- First Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, PR China.
| | - Yiran He
- First Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, PR China.
| | - Wenfeng Xu
- First Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, PR China.
| | - Guoyan Deng
- First Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, PR China.
| | - Guiming Deng
- First Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, PR China.
| | - Xiaohe Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, PR China; Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, 100 Sihuan Road, Beijing, 100039, PR China; China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, 100 Sihuan Road, Beijing, 100039, PR China.
| |
Collapse
|
3
|
Clinical Translation of Microbiome Research in Alopecia Areata: A New Perspective? COSMETICS 2022. [DOI: 10.3390/cosmetics9030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The continuous research advances in the microbiome field is changing clinicians’ points of view about the involvement of the microbiome in human health and disease, including autoimmune diseases such as alopecia areata (AA). Both gut and cutaneous dysbiosis have been considered to play roles in alopecia areata. A new approach is currently possible owing also to the use of omic techniques for studying the role of the microbiome in the disease by the deep understanding of microorganisms involved in the dysbiosis as well as of the pathways involved. These findings suggest the possibility to adopt a topical approach using either cosmetics or medical devices, to modulate or control, for example, the growth of overexpressed species using specific bacteriocins or postbiotics or with pH control. This will favour at the same time the growth of beneficial bacteria which, in turn, can impact positively both the structure of the scalp ecosystem on the host’s response to internal and external offenders. This approach, together with a “systemic” one, via oral supplementation, diet, or faecal transplantation, makes a reliable translation of microbiome research in clinical practice and should be taken into consideration every time alopecia areata is considered by a clinician.
Collapse
|
4
|
Multi-Omics Analysis to Generate Hypotheses for Mild Health Problems in Monkeys. Metabolites 2021; 11:metabo11100701. [PMID: 34677416 PMCID: PMC8538200 DOI: 10.3390/metabo11100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Certain symptoms associated with mild sickness and lethargy have not been categorized as definitive diseases. Confirming such symptoms in captive monkeys (Macaca fascicularis, known as cynomolgus monkeys) can be difficult; however, it is possible to observe and analyze their feces. In this study, we investigated the relationship between stool state and various omics data by considering objective and quantitative values of stool water content as a phenotype for analysis. By examining the food intake of the monkeys and assessing their stool, urine, and plasma, we attempted to obtain a comprehensive understanding of the health status of individual monkeys and correlate it with the stool condition. Our metabolomics data strongly suggested that many lipid-related metabolites were correlated with the stool water content. The lipidomic analysis revealed the involvement of saturated and oxidized fatty acids, metallomics revealed the contribution of selenium (a bio-essential trace element), and intestinal microbiota analysis revealed the association of several bacterial species with the stool water content. Based on our results, we hypothesize that the redox imbalance causes minor health problems. However, it is not possible to make a definite conclusion using multi-omics alone, and other hypotheses could be proposed.
Collapse
|
5
|
Padakandla SR, Das T, Sai Prashanthi G, Angadi KK, Reddy SS, Reddy GB, Shivaji S. Dysbiosis in the Gut Microbiome in Streptozotocin-Induced Diabetes Rats and Follow-Up During Retinal Changes. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 34431974 PMCID: PMC8399471 DOI: 10.1167/iovs.62.10.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose To analyze the gut bacterial microbiome of streptozotocin-induced diabetic rats and rats with retinal changes. Methods Induction of diabetes was confirmed by an increase in blood sugar (>150 mg/dL), and the progression of diabetes with retinal changes was assessed by histology and immunohistochemistry of retinal sections. Microbiomes were generated using fecal DNA, and the V3–V4 amplicons were sequenced and analyzed by QIIME and R. Results Dysbiosis in the gut microbiome of diabetic rats and diabetic rats with retinal changes was observed at the phylum and genus levels compared with the control rats. Heat-map analysis based on the differentially abundant genera indicated that the microbiomes of controls and diabetic rats separated into two distinct clusters. The majority of the microbiomes in diabetic rats with retinal changes also formed a distinct cluster from the control rats. β-diversity analysis separated the microbiome of control rats from the microbiome of diabetic rats and diabetic rats with retinal changes, but the microbiomes of diabetic rats and diabetic rats with retinal changes showed an overlap. Functional analysis indicated that the enhanced inflammation in diabetic rats showing retinal changes could be ascribed to a decrease in anti-inflammatory bacteria and an increase in pathogenic and proinflammatory bacteria. Conclusions This study showed that the gut bacterial microbiome in diabetic rats with retinal changes was different compared with control rats. The results could help develop novel therapeutics for diabetics and diabetic individuals with retinal changes.
Collapse
Affiliation(s)
- Shalem Raj Padakandla
- Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Taraprasad Das
- Smt. Kanuri Santhamma Centre for Vitreo Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gumpili Sai Prashanthi
- Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kiran Kumar Angadi
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - S Sreenivasa Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Sisinthy Shivaji
- Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Pinto D, Trink A, Sorbellini E, Giuliani G, Rinaldi F. 'Omics' approaches for studying the microbiome in Alopecia areata. J Investig Med 2020; 68:1292-1294. [PMID: 32958525 PMCID: PMC7525785 DOI: 10.1136/jim-2020-001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 11/06/2022]
Abstract
Nowadays, the involvement of the microbiome in human health and many human diseases, including that strictly related to the scalphas been brought to the light. Indeed, more recently, authors highlighted the presence of a significant microbial shift both in nonscarring (Androgenetic alopecia and Alopecia areata) and scarring Alopecias. The advent of novel technologies together with the effort of many scientists in the microbiome field could provide in the nearest future a clearest framework about the strict relationship between human healthiness and symbiotic microorganism resident on different ecosystem of our body. In this view, the use of Omics approaches has to be considered as no longer negligible when studying the microbiome implication in human health and disease.
Collapse
Affiliation(s)
| | - Anna Trink
- Human Microbiome Advanced Project, Milan, Italy
| | | | | | | |
Collapse
|
7
|
Lin TL, Lu CC, Lai WF, Wu TS, Lu JJ, Chen YM, Tzeng CM, Liu HT, Wei H, Lai HC. Role of gut microbiota in identification of novel TCM-derived active metabolites. Protein Cell 2020; 12:394-410. [PMID: 32929698 PMCID: PMC8106560 DOI: 10.1007/s13238-020-00784-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used to ameliorate diseases in Asia for over thousands of years. However, owing to a lack of formal scientific validation, the absence of information regarding the mechanisms underlying TCMs restricts their application. After oral administration, TCM herbal ingredients frequently are not directly absorbed by the host, but rather enter the intestine to be transformed by gut microbiota. The gut microbiota is a microbial community living in animal intestines, and functions to maintain host homeostasis and health. Increasing evidences indicate that TCM herbs closely affect gut microbiota composition, which is associated with the conversion of herbal components into active metabolites. These may significantly affect the therapeutic activity of TCMs. Microbiota analyses, in conjunction with modern multiomics platforms, can together identify novel functional metabolites and form the basis of future TCM research.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan, China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China.,Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China
| | - Wei-Fan Lai
- Department of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, China
| | - Ting-Shu Wu
- Department of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, China.,Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China.,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China
| | - Jang-Jih Lu
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China.,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan, China
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, China
| | - Hong-Tao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200435, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan, China. .,Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China. .,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China. .,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, 33302, Taiwan, China. .,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taoyuan, 33303, Taiwan, China.
| |
Collapse
|
8
|
Bennet SM, Keshteli AH, Bercik P, Madsen KL, Reed D, Vanner SJ. Application of metabolomics to the study of irritable bowel syndrome. Neurogastroenterol Motil 2020; 32:e13884. [PMID: 32426922 DOI: 10.1111/nmo.13884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
The pathophysiology of irritable bowel syndrome and the detection of biomarkers of specific mechanisms and/or predictors of therapeutic response remain elusive. This roadblock reflects, in large part, the complexity and heterogeneity of the disorder. Recently, there has been growing evidence of a dietary and/or microbiome interaction with the host that may trigger symptoms in a subset of patients. While a number of techniques are available to examine these potential interactions, "omic" approaches such as metabolomics are becoming more widely used. Metabolomics measures hundreds and potentially thousands of known and unknown small molecule chemicals (metabolites) to provide a unique look into mechanisms that underlie symptom generation and potential predictors of therapeutic response. In this issue of the journal, Lee et al use nuclear magnetic resonance (NMR) to demonstrate the value of this approach to study IBS. This review examines the use of metabolomics to better understand IBS, focusing on what has been learned to date, practical and technical considerations, its potential for future research and how the study by Lee et al have contributed to these concepts.
Collapse
Affiliation(s)
- Sean M Bennet
- GI Diseases Research Unit, Queen's University, Kingston General Hospital, Kingston, ON, Canada
| | | | - Premysl Bercik
- Department of Medicine, Farncombe Institute, McMaster University, ON, Canada
| | | | - David Reed
- GI Diseases Research Unit, Queen's University, Kingston General Hospital, Kingston, ON, Canada
| | - Stephen J Vanner
- GI Diseases Research Unit, Queen's University, Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
9
|
Zhu S, Liu S, Li H, Zhang Z, Zhang Q, Chen L, Zhao Y, Chen Y, Gu J, Min L, Zhang S. Identification of Gut Microbiota and Metabolites Signature in Patients With Irritable Bowel Syndrome. Front Cell Infect Microbiol 2019; 9:346. [PMID: 31681624 PMCID: PMC6813219 DOI: 10.3389/fcimb.2019.00346] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. However, the underlying mechanism of IBS is not fully understood. The aim of this study was to investigate potential mechanism and novel biomarkers of IBS through evaluation of the metabolomic and microbiologic profile. Methods: Fecal samples were collected from 15 irritable bowel syndrome patients and 15 healthy controls. By using gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) and 16S rDNA amplicon sequencing, fecal metabolites and microbiota of healthy controls and the IBS patients were measured. Results: IBS patients had a significantly differential metabolite profile as compared to healthy controls, and 4 clusters with 31 metabolites, including a group of amino acids and fatty acids, were significantly up-regulated as compared to the healthy controls. In addition, 19 microbes were significantly up-regulated, and 12 microbes were down-regulated in the IBS group, when compared with the healthy controls. Some clusters of fecal metabolites or microorganisms were significantly correlated with the severity of IBS symptoms, such as the frequency of abdominal pain/discomfort and the number of bowel movements. Correlation of the metabolite levels with abundances of microbial genera showed some statistically significant metabolite-microbe associations. Four differentially abundant amino acids clustered together were positively correlated with some microbes, including Lachnospira, Clostridium, and so on. Conclusion: The finding of this study puts a global perspective on metabolomics and microbiota profiling in IBS patients and provides a theoretical basis for future research on pathophysiology of IBS.
Collapse
Affiliation(s)
- Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, Department of Automation, BNRist, Tsinghua University, Beijing, China
| | - Junchao Gu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| |
Collapse
|