1
|
Arros P, Palma D, Gálvez-Silva M, Gaete A, Gonzalez H, Carrasco G, Coche J, Perez I, Castro-Nallar E, Galbán C, Varas MA, Campos M, Acuña J, Jorquera M, Chávez FP, Cambiazo V, Marcoleta AE. Life on the edge: Microbial diversity, resistome, and virulome in soils from the union glacier cold desert. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177594. [PMID: 39571816 DOI: 10.1016/j.scitotenv.2024.177594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
The high-latitude regions of Antarctica remain among the most remote, extreme, and least explored areas on Earth. Still, microbial life has been reported in these environments, with limited information on their genetic properties and functional capabilities. Although diverse autochthonous multidrug-resistant bacteria were found in Antarctic Peninsula soils, posing whether these soils could act as a source of resistance determinants that could emerge among pathogens, we still lack information regarding the resistome of areas closer to the South Pole. Moreover, no previous studies have evaluated the pathogenic potential of microbes inhabiting Antarctic soils. In this work, we combined metagenomic and culture-dependent approaches to investigate the microbial diversity, resistome, virulome, and mobile genetic elements (MGEs) in soils from Union Glacier, a cold desert in West Antarctica. Despite the extreme conditions, several bacterial phyla were found, predominating Actinomycetota and Pseudomonadota, with limited archaeal and fungal taxa. Contrastive with Ecology Glacier soils from King George Island, the Union Glacier soil bacterial community is significantly less diverse, mainly attributed to scarce moisture. We recovered >80 species-level representative genomes (SRGs) of predominant bacteria and an ammonia-oxidating nitrogen- and carbon-fixing archaeon from a novel species of Nitrosocosmicus. Several resistance and virulence genes were found in Union Glacier soils, similar to those in other Antarctic cold desert areas but significantly distinct from those observed in maritime Antarctica and other non-cryosphere biomes. Furthermore, we characterized bacterial isolates resistant to up to 24 clinical antibiotics, mainly Pseudomonas, Arthrobacter, Plantibacter, and Flavobacterium. Moreover, some isolates produced putative virulence factors, including siderophores, pyocyanins, and exoenzymes with hemolytic, lecithinase, protease, and DNAse activity. This evidence uncovers a largely unexplored resistome and virulome hosted by deep Antarctica's soil microbial communities and the presence of bacteria with pathogenic potential, highlighting the relevance of One Health approaches for environmental surveillance in this continent.
Collapse
Affiliation(s)
- Patricio Arros
- Grupo de Microbiología Integrativa, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniel Palma
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile and Millenium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Matías Gálvez-Silva
- Grupo de Microbiología Integrativa, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile and Millenium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Hugo Gonzalez
- Grupo de Microbiología Integrativa, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gabriela Carrasco
- Grupo de Microbiología Integrativa, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José Coche
- Grupo de Microbiología Integrativa, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ian Perez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Lircay, Talca, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile
| | - Cristóbal Galbán
- Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Macarena A Varas
- Grupo de Microbiología Integrativa, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marco Campos
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jacquelinne Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Milko Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile and Millenium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Andrés E Marcoleta
- Grupo de Microbiología Integrativa, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Ouyang B, Yang C, Lv Z, Chen B, Tong L, Shi J. Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. ENVIRONMENT INTERNATIONAL 2024; 191:108989. [PMID: 39241334 DOI: 10.1016/j.envint.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) persistence and potential harm have become more widely recognized in the environment due to its fast-paced research. However, the bibliometric review on the detection, research hotspot, and development trend of environmental ARGs has not been widely conducted. It is essential to provide a comprehensive overview of the last 30 years of research on environmental ARGs to clarify the changes in the research landscape and ascertain future prospects. This study presents a visualized analysis of data from the Web of Science to enhance our understanding of ARGs. The findings indicate that solid-phase extraction provides a reliable method for extracting ARG. Technological advancements in commercial kits and microfluidics have facilitated the efficacy of ARGs extraction with significantly reducing processing times. PCR and its derivatives, DNA sequencing, and multi-omics technology are the prevalent methodologies for ARGs detection, enabling the expansion of ARG research from individual strains to more intricate microbial communities in the environment. Furthermore, due to the development of combination, hybridization and mass spectrometer technologies, considerable advancements have been achieved in terms of sensitivity and accuracy as well as lowering the cost of ARGs detection. Currently, high-frequency terms such as "Antibiotic Resistance, Antibiotics, and Metagenomics" are the center of attention for study in this area. Prominent topics include the investigation of anthropogenic impacts on environmental resistance, as well as the dynamics of migration, dissemination, and adaptation of environmental ARGs, etc. The research on environmental ARGs has made significant advancements in the fields of "Microbiology" and "Biotechnology Applied Microbiology". Over the past decade, there has been a notable increase in the fields of "Environmental Sciences Ecology" and "Engineering" with a similar growth trend observed in "Water Resources". These three domains are expected to continue driving extensive study within the realm of environmental ARGs.
Collapse
Affiliation(s)
- Bowei Ouyang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Cong Yang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Ziyue Lv
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China.
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Roca I, Espinoza K, Irigoin-Lovera C, Piquet M, Palomino-Kobayashi LA, Castillo AK, Gonzales-DelCarpio DD, Viñes J, Muñoz L, Ymaña B, Oporto R, Zavalaga C, Pons MJ, Ruiz J. Clonal dissemination of Acinetobacter radioresistens among Humboldt penguins (Spheniscus humboldti) inhabiting a barren northern Peruvian island. Eur J Microbiol Immunol (Bp) 2024; 14:210-218. [PMID: 38483509 PMCID: PMC11097781 DOI: 10.1556/1886.2023.00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 05/16/2024] Open
Abstract
Acinetobacter spp. are often isolated from natural sources, but knowledge about their presence in wild animals is fragmented and uncomplete. The present study aimed to characterize a series of Acinetobacter radioresistens isolated from Humboldt penguins (Spheniscus humboldti). Fifteen Humboldt penguins from an inhabited northern Peruvian island were sampled. Microorganisms were identified by MALDI-TOF MS. Antibiotic susceptibility to 12 antimicrobial agents was established, and clonal relationships were determined. A representative isolate was selected for whole genome sequencing (WGS). A. radioresistens were isolated from the feces of 12 (80%) Humboldt penguins, being susceptible to all the antimicrobial agents tested, except eight cefotaxime-intermediate isolates. All A. radioresistens were clonally related. WGS showed that the isolate belonged to ST1972, the presence of two chromosomal encoded carbapenemases (blaOXA-23 and a putative subclass B3 metallo-β-lactamase), and a series of point mutations in antibiotic-resistance related chromosomal genes, which were considered as polymorphisms. In addition, a few virulence factors, including a capsule-encoding operon, superoxide dismutases, catalases, phospholipases and a siderophore receptor were identified. The present results suggest that A. radioresistens may be a common member of the gut microbiota of Humboldt penguins, but further studies in other geographical areas are needed to establish this finding.
Collapse
Affiliation(s)
- Ignasi Roca
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Kathya Espinoza
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos – “One Health”, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación en Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| | - Cinthia Irigoin-Lovera
- Unidad de Investigación de Ecosistemas Marinos-Grupo Aves Marinas, Universidad Científica del Sur, Lima, Peru
| | - Maria Piquet
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Luciano A. Palomino-Kobayashi
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos – “One Health”, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación en Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| | - Angie K. Castillo
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos – “One Health”, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación en Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| | - Diego D. Gonzales-DelCarpio
- Unidad de Investigación de Ecosistemas Marinos-Grupo Aves Marinas, Universidad Científica del Sur, Lima, Peru
| | - Joaquim Viñes
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- Servei Veterinari de Genètica Molecular (SVGM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Muñoz
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Ymaña
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos – “One Health”, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación en Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| | - Rosario Oporto
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos – “One Health”, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación en Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| | - Carlos Zavalaga
- Unidad de Investigación de Ecosistemas Marinos-Grupo Aves Marinas, Universidad Científica del Sur, Lima, Peru
| | - Maria J. Pons
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos – “One Health”, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación en Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos – “One Health”, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación en Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
4
|
Iduu NV, Raiford D, Conley A, Scaria J, Nelson J, Ruesch L, Price S, Yue M, Gong J, Wei L, Wang C. A Retrospective Analysis of Salmonella Isolates across 11 Animal Species (1982-1999) Led to the First Identification of Chromosomally Encoded blaSCO-1 in the USA. Microorganisms 2024; 12:528. [PMID: 38543579 PMCID: PMC10974302 DOI: 10.3390/microorganisms12030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Antimicrobial resistance (AMR) in non-typhoidal Salmonella is a pressing public health concern in the United States, necessitating continuous surveillance. We conducted a retrospective analysis of 251 Salmonella isolates from 11 animal species recovered between 1982 and 1999, utilizing serotyping, antimicrobial susceptibility testing, and whole-genome sequencing (WGS). Phenotypic resistance was observed in 101 isolates, with S. Typhimurium, S. Dublin, S. Agona, and S. Muenster prevailing among 36 identified serovars. Notably, resistance to 12 of 17 antibiotics was detected, with ampicillin being most prevalent (79/251). We identified 38 resistance genes, primarily mediating aminoglycoside (n = 13) and β-lactamase (n = 6) resistance. Plasmid analysis unveiled nine distinct plasmids associated with AMR genes in these isolates. Chromosomally encoded blaSCO-1 was present in three S. Typhimurium and two S. Muenster isolates from equine samples, conferring resistance to amoxicillin/clavulanic acid. Phylogenetic analysis revealed three distinct clusters for these five isolates, indicating evolutionary divergence. This study represents the first report of blaSCO-1 in the USA, and our recovered isolates harboring this gene as early as 1989 precede those of all other reports. The enigmatic nature of blaSCO-1 prompts further research into its function. Our findings highlight the urgency of addressing antimicrobial resistance in Salmonella for effective public health interventions.
Collapse
Affiliation(s)
- Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Donna Raiford
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Austin Conley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Joy Scaria
- Department of Veterinary Pathobiology, Stillwater, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Julie Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Laura Ruesch
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Stuart Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310027, China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
| | - Lanjing Wei
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA;
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| |
Collapse
|
5
|
Dietz-Vargas C, Valenzuela-Ibaceta F, Carrasco V, Pérez-Donoso JM. Solid medium for the direct isolation of bacterial colonies growing with polycyclic aromatic hydrocarbons or 2,4,6-trinitrotoluene (TNT). Arch Microbiol 2023; 205:271. [PMID: 37358740 DOI: 10.1007/s00203-023-03610-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Isolation of hydrocarbon-degrading bacteria is a key step for the study of microbiological diversity, metabolic pathways, and bioremediation. However current strategies lack simplicity and versatility. We developed an easy method for the screening and isolation of bacterial colonies capable of degrading hydrocarbons, such as diesel or polycyclic aromatic hydrocarbons (PAHs), as well as the pollutant explosive, 2,4,6-trinitrotoluene (TNT). The method uses a two-layer solid medium, with a layer of M9 medium, and a second layer containing the carbon source deposited through the evaporation of ethanol. Using this medium we grew hydrocarbon-degrading strains, as well as TNT-degrading isolates. We were able to isolate PAHs-degrading bacterial colonies directly from diesel-polluted soils. As a proof of concept, we used this method to isolate a phenanthrene-degrading bacteria, identified as Acinetobacter sp. and determined its ability to biodegrade this hydrocarbon.
Collapse
Affiliation(s)
- Claudio Dietz-Vargas
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile
| | - Felipe Valenzuela-Ibaceta
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile
| | - Valentina Carrasco
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile
| | - José M Pérez-Donoso
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile.
| |
Collapse
|
6
|
Ruggiero M, Brunetti F, Dabos L, Girlich D, Muñoz JIB, Conza JD, Power P, Gutkind G, Naas T. Diversity of genetic platforms harboring the bla PER-2 gene in Enterobacterales and insights into the role of ISPa12 in its mobilization and dissemination. Int J Antimicrob Agents 2023:106850. [PMID: 37178777 DOI: 10.1016/j.ijantimicag.2023.106850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The production of PER-like extended-spectrum β-lactamases has recently been associated with reduced susceptibility to the last resort drugs aztreonam/avibactam and cefiderocol. PER-2 have been mainly confined to Argentina and neighboring countries. Until now, only three plasmids harboring blaPER-2 genes have been characterized but very little is known about the involvement of different plasmid groups in its dissemination. This study analyzed the diversity of genetic platforms associated with blaPER-2 genes from a collection of PER-producing Enterobacterales by describing both the close environment as well as the plasmid backbones. Full sequences of eleven plasmids were obtained by short (Illumina) and long read (Oxford Nanopore or PacBio) sequencing technologies. De novo assemblies, annotation and sequence analysis were performed by Unicycler, Prokka and BLAST. Plasmids analysis revealed that blaPER-2 gene is encoded on plasmids of different incompatibility groups (A, C, FIB, HI1B, N2) suggesting that this gene may have been disseminated through a variety of plasmids. Analysis and comparison with the few public available nucleotide sequences describing blaPER-2 genetic environment, including those from the environmental species Pararheinheimera spp. (considered as the progenitor of blaPER genes), suggests a role of ISPa12 in blaPER-2 gene mobilization from the chromosome of Pararheinheimera spp. Also, the blaPER-2 gene was carried by a novel ISPa12-composite transposon Tn7390. In addition, its association with ISKox2-like elements in the close genetic environment in all analyzed plasmids suggests a role of this IS in further dissemination of blaPER-2 genes.
Collapse
Affiliation(s)
- Melina Ruggiero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Brunetti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Dabos
- Team RESIST, UMR1184, INSERM, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France; Polytechnic University of Madrid, Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), Evolutionary systems genetics of microbes Laboratory, Spain
| | - Delphine Girlich
- Team RESIST, UMR1184, INSERM, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Jackson Ivan Briceño Muñoz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - José Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Thierry Naas
- Team RESIST, UMR1184, INSERM, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance "Carbapenemase-producing Enterobacterales"
| |
Collapse
|
7
|
Cevallos MA, Basanta MD, Bello-López E, Escobedo-Muñoz AS, González-Serrano FM, Nemec A, Romero-Contreras YJ, Serrano M, Rebollar EA. Genomic characterization of antifungal Acinetobacter bacteria isolated from the skin of the frogs Agalychnis callidryas and Craugastor fitzingeri. FEMS Microbiol Ecol 2022; 98:6775075. [PMID: 36288213 DOI: 10.1093/femsec/fiac126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023] Open
Abstract
Chytridiomycosis, a lethal fungal disease caused by Batrachochytrium dendrobatidis (Bd), is responsible for population declines and extinctions of amphibians worldwide. However, not all amphibian species are equally susceptible to the disease; some species persist in Bd enzootic regions with no population reductions. Recently, it has been shown that the amphibian skin microbiome plays a crucial role in the defense against Bd. Numerous bacterial isolates with the capacity to inhibit the growth of Batrachochytrium fungi have been isolated from the skin of amphibians. Here, we characterized eight Acinetobacter bacteria isolated from the frogs Agalychnis callidryas and Craugastor fitzingeri at the genomic level. A total of five isolates belonged to Acinetobacter pittii,Acinetobacter radioresistens, or Acinetobactermodestus, and three were not identified as any of the known species, suggesting they are members of new species. We showed that seven isolates inhibited the growth of Bd and that all eight isolates inhibited the growth of the phytopathogen fungus Botrytis cinerea. Finally, we identified the biosynthetic gene clusters that could be involved in the antifungal activity of these isolates. Our results suggest that the frog skin microbiome includes Acinetobacter isolates that are new to science and have broad antifungal functions, perhaps driven by distinct genetic mechanisms.
Collapse
Affiliation(s)
- M A Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - M D Basanta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México.,Department of Biology, University of Nevada Reno, 1664 N Virgina St, Reno, NV 89557, United States
| | - E Bello-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - A S Escobedo-Muñoz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - F M González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - A Nemec
- Laboratory of Bacterial Genetics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, 100 00 Prague 10, Czechia.,Department of Medical Microbiology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czechia
| | - Y J Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - M Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - E A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| |
Collapse
|
8
|
Phenotypic and Genotypic Characterization of Macrolide, Lincosamide and Streptogramin B Resistance among Clinical Methicillin-Resistant Staphylococcus aureus Isolates in Chile. Antibiotics (Basel) 2022; 11:antibiotics11081000. [PMID: 35892390 PMCID: PMC9332560 DOI: 10.3390/antibiotics11081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Macrolides, lincosamides, and type B streptogramins (MLSB) are important therapeutic options to treat methicillin-resistant Staphylococcus aureus (MRSA) infections; however, resistance to these antibiotics has been emerging. In Chile, data on the MLSB resistance phenotypes are scarce in both community-(CA) and hospital-acquired (HA) MRSA isolates. Antimicrobial susceptibility to MLSB was determined for sixty-eight non-repetitive isolates of each HA-(32) and CA-MRSA (36). Detection of SCCmec elements, ermA, ermB, ermC, and msrA genes was performed by PCR. The predominant clones were SCCmec I-ST5 (HA-MRSA) and type IVc-ST8 (CA-MRSA). Most of the HA-MRSA isolates (97%) showed resistance to clindamycin, erythromycin, azithromycin, and clarithromycin. Among CA-MRSA isolates, 28% were resistant to erythromycin, azithromycin, and 25% to clarithromycin. All isolates were susceptible to linezolid, vancomycin, daptomycin and trimethoprim/sulfamethoxazole, and over 97% to rifampicin. The ermA gene was amplified in 88% of HA-MRSA and 17% of CA-MRSA isolates (p < 0.001). The ermC gene was detected in 6% of HA-SARM and none of CA-SARM isolates, whereas the msrA gene was only amplified in 22% of CA-MRSA (p < 0.005). Our results demonstrate the prevalence of the cMLSB resistance phenotype in all HA-MRSA isolates in Chile, with the ermA being the predominant gene identified among these isolates.
Collapse
|
9
|
Jang J, Park J, Hwang CY, Choi J, Shin J, Kim YM, Cho KH, Kim JH, Lee YM, Lee BY. Abundance and diversity of antibiotic resistance genes and bacterial communities in the western Pacific and Southern Oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153360. [PMID: 35085628 DOI: 10.1016/j.scitotenv.2022.153360] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 106 ± 1.6 × 106 copies/mL in the western Pacific Ocean, with the highest value (7.8 × 106 copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. β-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.
Collapse
Affiliation(s)
- Jiyi Jang
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea; Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Jiyeon Park
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea.
| | - Chung Yeon Hwang
- Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinhee Choi
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Jingyeong Shin
- Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Young Mo Kim
- Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kyung Hwa Cho
- Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Jung-Hyun Kim
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Yung Mi Lee
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Bang Yong Lee
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| |
Collapse
|
10
|
Velázquez-Ríos IO, Rincón-Rosales R, Gutiérrez-Miceli FA, Alcántara-Hernández RJ, Ruíz-Valdiviezo VM. Prokaryotic diversity across a pH gradient in the “El Chichón” crater-lake: a naturally thermo-acidic environment. Extremophiles 2022; 26:8. [DOI: 10.1007/s00792-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
|
11
|
Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, Zada S, Ali B, Hayat M, Irfan M, Kang S. Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139275. [PMID: 32480145 DOI: 10.1016/j.scitotenv.2020.139275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The present world faces a new threat of ancient microbes and resistomes that are locked in the cryosphere and now releasing upon thawing due to climate change and anthropogenic activities. The cryosphere act as the best preserving place for these microbes and resistomes that stay alive for millions of years. Current reviews extensively discussed whether the resurrection of microbes and resistomes existing in these pristine environments is true or just a hype. Release of these ancient microorganisms and naked DNA is of great concern for society as these microbes can either cause infections directly or they can interact with contemporary microorganisms and affect their fitness, survival, and mutation rate. Moreover, the contemporary microorganisms may uptake the unlocked naked DNA, which might transform non-pathogenic microorganisms into deadly antibiotic-resistant microbes. Additionally, the resurrection of glacial microorganisms can cause adverse effects on ecosystems downstream. The release of glacial pathogens and naked DNA is real and can lead to fatal outbreaks; therefore, we must prepare ourselves for the possible reemergence of diseases caused by these microbes. This study provides a scientific base for the adoption of actions by international cooperation to develop preventive measures.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghufranud Din
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Hayat
- Institute of Microbial Technology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao Campus, China
| | - Muhammad Irfan
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, FL. USA
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|