1
|
Li YY, Deligeer, Liu J, Shi K. Genome-wide identification and coexpression network analysis of heat shock protein superfamily in Apolygus lucorum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22145. [PMID: 39183528 DOI: 10.1002/arch.22145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Heat shock proteins (Hsp) function as crucial molecular chaperones, playing pivotal roles in insects' response to stress stimuli. Apolygus lucorum, known for its broad spectrum of host plants and significant crop damage potential, presents a compelling subject for understanding stress response mechanisms. Hsp is important for A. lucorum to tolerate temperature and insecticide stress and may be involved in the formation of resistance to the interactive effects of temperature and insecticide. Here, we employed comprehensive genomic approaches to identify Hsp superfamily members in its genome. In total, we identified 42 Hsp genes, including 3 Hsp90, 16 Hsp70, 13 Hsp60, and 10 Hsp20. Notably, we conducted motif analysis and gene structures for Hsp members, which suggested the same families are relatively conserved. Furthermore, leveraging the weighted gene coexpression network analysis, we observed diverse expression patterns of different Hsp types across various tissues, with certain Hsp70 showing tissue-specific bias. Noteworthy among the highly expressed Hsp genes was testis-specific, which may serve as a pivotal hub gene regulating the gene network. Our findings shed light on the molecular evolutionary dynamics and temperature stress response mechanisms of Hsp genes in A. lucorum, offering insights into its adaptive strategies and potential targets for pest management.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China
| | - Deligeer
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China
| | - Jing Liu
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China
| | - Kai Shi
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
2
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
3
|
Liu YK, Liu GH, Liu L, Wang AB, Cheng TY, Duan DY. Comparative analysis of the anticoagulant activities and immunogenicity of HSC70 and HSC70 TKD of Haemaphysalis flava. Parasit Vectors 2022; 15:411. [PMID: 36335395 PMCID: PMC9636643 DOI: 10.1186/s13071-022-05521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Haemaphysalis flava is a hematophagous ectoparasite that acquires the nutrition needed for development and reproduction by sucking blood and digesting the blood meal. During blood-sucking and blood-meal digestion, the prevention of blood coagulation is important for this tick. Previous studies have shown that heat shock cognate 70 (HSC70) protein has certain anticoagulant activities, but its immunogenicity remains unclear. Also, whether the mutation of individual bases of the TKD-like peptide of HSC70 through the overlap extension method can change its anticoagulant activities and immunogenicity remains to be investigated. METHODS The gene encoding the HSC70 protein was cloned from a complementary DNA library synthesized from H. flava. The coding gene of the TKD-like peptide of HSC70 was mutated into a TKD peptide coding gene (HSC70TKD) using the overlap extension method. Escherichia coli prokaryotic expression plasmids were constructed to obtain the recombinant proteins of HSC70 (rHSC70) and HSC70TKD (rHSC70TKD). The purified rHSC70 and rHSC70TKD were evaluated at different concentrations for anticoagulant activities using four in vitro clotting assays. Emulsifying recombinant proteins with complete and incomplete Freund's adjuvants were subcutaneously immunized in Sprague Dawley rats. The serum antibody titers and serum concentrations of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) were detected using an indirect enzyme-linked immunosorbent assay to assess the immunogenicity of rHSC70 and rHSC70TKD. RESULTS The open reading frame of HSC70 was successfully amplified and found to have a length of 1958 bp. The gene encoding the TKD-like peptide of HSC70 was artificially mutated, with the 1373-position adenine (A) of the original sequence mutated into guanine (G), the 1385-position cytosine (C) mutated into G and the 1386-position G mutated into C. rHSC70 and rHSC70TKD that fused with His-tag were obtained using the expression plasmids pET-28a-HSC70 and pET-28a-HSC70TKD, respectively. rHSC70 and rHSC70TKD prolonged the thrombin time (TT) and reduced the fibrinogen (FIB) content in the plasma, but did not affect the prothrombin time (PT) or activated partial thromboplastin time (APTT) when compared to the negative control. Interestingly, the ability of rHSC70TKD to prolong the TT and reduce the FIB content in the plasma was better than that of rHSC70. The specific antibody titers of both rHSC70 and rHSC70TKD in rat serum reached 1:124,000 14 days after the third immunization. The serum concentration of IFN-γ in the rHSC70TKD group was higher than that in the rHSC70 group. The rHSC70 group has the highest serum concentration of IL-4, and the serum concentration of IL-4 in the rHSC70TKD group was higher than that in the negative group. CONCLUSIONS rHSC70 and rHSC70TKD exhibited anticoagulant activities by prolonging the TT and reducing the FIB content in vitro. rHSC70TKD had better anticoagulant activities than rHSC70. Both rHSC70 and rHSC70TKD had good immunogenicity and induced humoral and cellular immunity.
Collapse
Affiliation(s)
- Yu-Ke Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Guo-Hua Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Lei Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Ai-Bing Wang
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Tian-Yin Cheng
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - De-Yong Duan
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| |
Collapse
|
4
|
Lynn GE, Černý J, Kurokawa C, Diktaş H, Matias J, Sajid A, Arora G, DePonte K, Narasimhan S, Fikrig E. Immunization of guinea pigs with cement extract induces resistance against Ixodes scapularis ticks. Ticks Tick Borne Dis 2022; 13:102017. [PMID: 35963188 DOI: 10.1016/j.ttbdis.2022.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
As hematophagous parasites, many tick species are important vectors of medical and veterinary disease agents. Proteins found in tick saliva and midgut have been used with some success in immunizations of animal hosts against feeding ticks, and whole saliva has been used effectively in this capacity against Ixodes scapularis, the primary vector of tickborne pathogens in the United States. Tick saliva is a complex substance containing hundreds of proteins, and the identification of specific protective antigens is ongoing. We performed a series of experiments immunizing guinea pigs with extracts prepared from midgut or attachment cement collected from adult female I. scapularis followed by challenge with nymphs of the same species. Midgut extract did not induce protective immunity, while immunization with cement extract resulted in partial protection of hosts as evidenced by premature tick detachment and 34-41% reduction in tick engorgement weights. Proteomic characterization of I. scapularis cement was performed, demonstrating that the cement extract was compositionally different from tick saliva, and vitellogenin-like lipoproteins were the most abundant proteins in cement extract (>40%). Cement was also heavily enriched with lysozymes and defensins, including those originating from both the mammalian host as well as ticks. These results demonstrate that I. scapularis cement contains immunogenic components capable of stimulating host resistance against tick feeding. Because the cement is present at the tick-host interface for an extended period of time during the feeding process, these antigens present auspicious candidates for further evaluation and potential inclusion in an anti-tick vaccine.
Collapse
Affiliation(s)
- Geoffrey E Lynn
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States.
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Czech University of Life Sciences in Prague, Praha-Suchdol, CZ 16500, Czechia
| | - Cheyne Kurokawa
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Hüsrev Diktaş
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Jaqueline Matias
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Andaleeb Sajid
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Gunjan Arora
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Kathleen DePonte
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Sukanya Narasimhan
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Erol Fikrig
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| |
Collapse
|