1
|
Lu S, Chen S, Zhang Y, Mou X, Li M, Zhu S, Chen X, Strandin TM, Jiang Y, Xiang Z, Liu Y, Xiong H, Guo D, Chen L, Li Y, Hou W, Luo F. Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation. FASEB J 2025; 39:e70295. [PMID: 39792131 PMCID: PMC11721564 DOI: 10.1096/fj.202401916r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown. Here, we identified that HTNV infection inhibits PTEN expression in vitro and in vivo. The HTNV glycoprotein Gc promotes PTEN ubiquitination and degradation through 26S-proteasome pathway via the E3 ubiquitin ligase NEDD4. In addition, knockdown of PTEN prevents autophagy and increases HTNV production, while overexpression of PTEN induces autophagosome formation which can wrap HTNV particles, thus leading to restrain the production of progeny viruses. Altogether, our findings reveal the role of PTEN in HTNV infection by autophagy, highlighting the potential importance of PTEN and autophagy in the treatment of HFRS diseases.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- College of Life SciencesSouth‐Central Minzu UniversityWuhanHubeiChina
| | - Shuliang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Yuqing Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xiaoli Mou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Mingyang Li
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Shaowei Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xingyuan Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Tomas M. Strandin
- Department of Virology, MedicumUniversity of HelsinkiHelsinkiFinland
| | - Yale Jiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Zhoufu Xiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouGuangdongChina
| | - Liangjun Chen
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yirong Li
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
- School of Public HealthWuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
- Pingyuan LaboratoryXinxiangHenanChina
| |
Collapse
|
2
|
Liu YY, Li N, Chen XY, Wang H, Zhu SW, Yang L, Quan FY, Ma JC, Dai JW, Jiang YL, Xiang ZF, Cheng Q, Zhang WH, Chen KH, Hou W, Xiong HR. MicroRNA let-7a regulation of Hantaan virus replication by Targeting FAS Signaling Pathways. Virology 2024; 600:110254. [PMID: 39383773 DOI: 10.1016/j.virol.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Hantaan virus (HTNV) infection in humans can cause hemorrhagic fever and renal syndrome (HFRS). Understanding host responses to HTNV infection is crucial for developing effective disease intervention strategies. Previous RNA-sequencing studies have investigated the role of microRNAs (miRNAs) in the post-transcriptional regulation of host genes in response to HTNV infection. In this study, we demonstrated that HTNV infection induces let-7a expression in human umbilical vein endothelial cells (HUVEC) and that HTNV G protein upregulates the expression of let-7a. miRNA let-7a mimics and inhibitors validated the predicted targets, including cell apoptosis genes (FAS, caspase-8, and caspase-3) and inflammatory factors (IL-6 and its related factors). Modulation of miRNA let-7a levels by miRNA mimics and inhibitors affected HTNV replication, indicating that HTNV modulates host miRNA expression to affect the outcome of the antiviral host response.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ning Li
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Xing-Yuan Chen
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Hui Wang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China
| | - Shao-Wei Zhu
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Lan Yang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Fang-Yi Quan
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Jian-Chun Ma
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Jian-Wei Dai
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ya-le Jiang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China
| | - Zhou-Fu Xiang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China
| | - Qi Cheng
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Wei-Hao Zhang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ke-Han Chen
- School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Wei Hou
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China.
| | - Hai-Rong Xiong
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
3
|
Mears MC, Bakre A. Characterizing Host microRNA: Virus Interactions of Orthoavulavirus javaense. Viruses 2024; 16:1748. [PMID: 39599862 PMCID: PMC11599118 DOI: 10.3390/v16111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Post-transcriptional gene regulation mediated by microRNAs (miRNAs) relies on sequence complementarity between the miRNA seed site and the target gene transcript(s). This complementarity can completely inhibit or reduce translation into protein. We hypothesized that viruses employ sequence complementarity/similarity with host miRNAs to inhibit or increase the miRNA-mediated regulation of host gene expression specifically during viral infection(s). In this study, we focus on Orthoavulavirus javaense (OAVJ), the causative of Newcastle disease, a poultry disease with significant economic impact. A computational analysis of OAVJ genomes from low-virulence (lentogenic) versus virulent (velogenic) viruses was carried out to identify viral signature motifs that potentially either mimic or complement host miRNA seed sequences. Data show that OAVJ genomes harbor viral seed mimics (vSMs) or viral seed sponges (vSSs) and can mimic host miRNAs or inhibit their regulation of host genes, disrupting cellular pathways. Our analyses showed that velogens encode a statistically significant higher number of vSMs and a lower number of vSSs relative to lentogens. The number of vSMs or vSSs did not correlate with gene length. The analysis of the secondary structures flanking these vSMs and vSSs showed structural features common to miRNA precursors. The inhibition or upregulation of vSS-miR-27b-5p altered P gene expression in a sequence-dependent manner. These data demonstrate that viral transcripts can interact with host miRNAs to alter the outcomes of infection.
Collapse
Affiliation(s)
| | - Abhijeet Bakre
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, 934 College Station Road, Athens, GA 30605, USA;
| |
Collapse
|
4
|
Zhang Y, Sun Q, Liu T, Chang C, Chen X, Duan Q, Wen Z, Zhang X, Pang B, Jiang X. Transcriptome Profiles Characteristics of the Peripheral Immune in Patients with Severe Fever with Thrombocytopenia Syndrome. J Inflamm Res 2024; 17:8357-8374. [PMID: 39530000 PMCID: PMC11552436 DOI: 10.2147/jir.s485118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Severe fever with thrombocytopenia syndrome (SFTS) is an acute viral infection disease with a high mortality, but there are no specific effective drugs or vaccines available for use. To develop effective treatment methods, more basic researches are urgently needed to elucidate the response mechanisms of patients. Patients and Methods Here, we conducted the transcriptomic analysis of peripheral immunity in 14 SFTS patients, ranging from moderate infection to severe and fatal disease. Results The results showed orderly cytokine signaling pathway modulation in moderate patients, cellular immunosuppression in severe patients, and significant dysregulation of the inflammatory response and coagulation dysfunction characteristic of deceased patients. In addition, WGCNA further showed a significant positive correlation between fatal outcomes and B cell and immunoglobulin mediated immune function modules, as well as a significant negative correlation with coagulation function modules. Conclusion Overall, our research findings systematically observed potential immune mechanisms underlying clinical symptom heterogeneity and noteworthily revealed multiple signaling pathways leading to coagulation dysfunction in fatal outcomes, not just related to decreased platelet count, which can further elucidate the interaction between viruses and hosts and contribute to clinical treatment.
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Qingshuai Sun
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| | - Tao Liu
- Department of Infectious Disease Control, Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, People’s Republic of China
| | - Caiyun Chang
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xiangjuan Chen
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Zixuan Wen
- School of Public Health, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xiaolin Jiang
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
- School of Public Health, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
5
|
Wei J, Ji Y, Bai Y, Cheng R, Zhang J, Hu X, Zhang C. MiR-130c-5p targets the SHVV n gene and upregulates immune cytokines (IL-6, IL-22, IL-1β) to inhibit viral replication. Front Immunol 2024; 15:1486816. [PMID: 39555085 PMCID: PMC11563963 DOI: 10.3389/fimmu.2024.1486816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Background Snakehead vesiculovirus (SHVV) has led to huge economic losses in snakehead aquaculture, and its pathogenic mechanisms is still not fully understood. MicroRNAs (miRNAs), as an important class of non-coding RNAs, play a key regulatory role in the process of viral infection. Methods We examined the effect of SHVV infection on the expression of miR-130c-5p and the effect of overexpression of miR-130c-5p on the proliferation of SHVV. Cotransfection of viral N protein and miR-130c-5p, and the effect of miR-130c-5p on the expression of N protein was detected. Meanwhile, the effect of overexpression of miR-130c-5p on the expression of various immune factors in the case of viral infection were also tested. Results In this study, SHVV infection significantly upregulated the expression of miR-130c-5p in channel catfish ovary (CCO) cells in a time- and dose-dependent manner. The further research revealed that miR-130c-5p mimic significantly inhibited, while its inhibitors promoted SHVV replication. In addition, miR-130c-5p could directly target the viral mRNA of n gene, and overexpression of miR-130c-5p could significantly decrease, and conversely, downregulation of miR-130c-5p could increase the mRNA and protein expression of the viral n gene. Meanwhile, overexpression of miR-130c-5p also upregulated the expression of immune-related genes, such as nucleotide-oligomerization domain (NOD)-like receptor subfamily C3 (NLRC3), myeloid differentiation factor 88 (MyD88), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), interleukin-22 (IL-22), and interleukin-1beta (IL-1β) in host cells. Conclusion miR-130c-5p was upregulated in the host during SHVV infection, and the upregulated miR-130c-5p directly inhibited viral replication by targeting the n gene of SHVV and promoting viral nucleoprotein degradation. The up-regulated miR-130c-5p also activated the expression of immune-related genes such as NLRC3, MyD88, NF-κB, IL-6, IL-22, and IL-1β, which were involved in the regulation of the signaling pathways including NF-κB, MyD88, Toll-like receptor (TLR), NLR, and janus tyrosine kinase-signal converter and activator of transcription (JAK-STAT), to enhance the host's antiviral immune response, and thus indirectly inhibited the viral proliferation.
Collapse
Affiliation(s)
- Jin Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yan Ji
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yaqian Bai
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Jiaqi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xianqin Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
6
|
Shen Z, Gao X, Huang D, Xu X, Shen J. The potential of Gynostemma pentaphyllum in the treatment of hyperlipidemia and its interaction with the LOX1-PI3K-AKT-eNOS pathway. Food Sci Nutr 2024; 12:8000-8012. [PMID: 39479713 PMCID: PMC11521742 DOI: 10.1002/fsn3.4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 11/02/2024] Open
Abstract
Gynostemma pentaphyllum, a traditional Chinese medicine, is widely used to treat various diseases, but its therapeutic effects and mechanisms of action on hyperlipidemia remain unclear. This study aims to investigate the effects of Danshen leaf on hyperlipidemia through network pharmacology, molecular docking, and cellular experiments, elucidating its multifaceted mechanism of action within the LOX1-PI3K-AKT-eNOS pathway. First, the active ingredients and targets of G. pentaphyllum were screened using the Traditional Chinese Medicine Systems Pharmacology database. Then, targets for hyperlipidemia were identified using the OMIM and GeneCards databases, and potential therapeutic targets for G. pentaphyllum in treating hyperlipidemia were determined. An active ingredient-target network was constructed using Cytoscape software, and a protein-protein interaction (PPI) network was built and visualized using the STRING database and Cytoscape software. Finally, GO functional and KEGG pathway enrichment analyses were performed, and the predicted mechanisms were validated through molecular docking and cell experiments. 85 targets for G. pentaphyllum and 1556 for Hyperlipidemia were screened, with 53 common targets. Twenty-four active ingredients of G. pentaphyllum were found to be involved in the treatment of hyperlipidemia. Key nodes such as Rhamnazin, Isofucosterol, and quercetin, and targets NCOA2, NR3C2, PGR, and PPARG showed high relevance. In the PPI network, 8 nodes, including IL6, PPARG, and VEGFA, exhibited high centrality. GO functional and KEGG pathway enrichment analyses indicated that G. pentaphyllum may treat hyperlipidemia by influencing various biological functions and pathways, such as DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and lipid and atherosclerosis. Cell experiments demonstrated that G. pentaphyllum significantly regulated the expression of key proteins in the LOX1-PI3K-AKT-eNOS pathway, thereby improving hyperlipidemia. G. pentaphyllum improves hyperlipidemia by mediating the LOX1-PI3K-AKT-eNOS pathway. This study provides a new theoretical basis and experimental evidence for applying G. pentaphyllum to treating hyperlipidemia.
Collapse
Affiliation(s)
- Zhuyang Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xin Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xiaojin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Jianping Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| |
Collapse
|
7
|
Hu Y, Wu C, Li T, Wu Y, Yao K, Zhang M, Li P, Bian X. Transcriptomic analysis reveals key molecular signatures across recovery phases of hemorrhagic fever with renal syndrome. BMC Med Genomics 2024; 17:229. [PMID: 39261833 PMCID: PMC11389505 DOI: 10.1186/s12920-024-02004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS), a life-threatening zoonosis caused by hantavirus, poses significant mortality risks and lacks specific treatments. This study aimed to delineate the transcriptomic alterations during the recovery phases of HFRS. METHODS RNA sequencing was employed to analyze the transcriptomic alterations in peripheral blood mononuclear cells from HFRS patients across the oliguric phase (OP), diuretic phase (DP), and convalescent phase (CP). Twelve differentially expressed genes (DEGs) were validated using quantitative real-time PCR in larger sample sets. RESULTS Our analysis revealed pronounced transcriptomic differences between DP and OP, with 38 DEGs showing consistent expression changes across all three phases. Notably, immune checkpoint genes like CD83 and NR4A1 demonstrated a monotonic increase, in contrast to a monotonic decrease observed in antiviral and immunomodulatory genes, including IFI27 and RNASE2. Furthermore, this research elucidates a sustained attenuation of immune responses across three phases, alongside an upregulation of pathways related to tissue repair and regeneration. CONCLUSION Our research reveals the transcriptomic shifts during the recovery phases of HFRS, illuminating key genes and pathways that may serve as biomarkers for disease progression and recovery.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Medical College, Xijing University, Xi'an, 710199, Shaanxi, People's Republic of China
| | - Chao Wu
- Shapingba Hospital affiliated to Chongqing University (Shapingba District People's Hospital of Chongqing), Chongqing, 400030, People's Republic of China
| | - Tuohang Li
- Patent Examination Cooperation Sichuan Center of the Patent Office, CNIPA, Chengdu, 610213, Sichuan, People's Republic of China
| | - Yang Wu
- Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, People's Republic of China
| | - Kun Yao
- Medical College, Xijing University, Xi'an, 710199, Shaanxi, People's Republic of China
| | - Mengtian Zhang
- Medical College, Xijing University, Xi'an, 710199, Shaanxi, People's Republic of China
| | - Pan Li
- Medical College, Xijing University, Xi'an, 710199, Shaanxi, People's Republic of China
| | - Xuzhao Bian
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Song H, Zhao H, Wang W, Li S. Integration analysis of miRNA-mRNA uncovers the molecular immune mechanism of macrophage response to Aeromonas veronii infection. Microb Pathog 2024; 194:106820. [PMID: 39047803 DOI: 10.1016/j.micpath.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Macrophages are innate immunity cells which play pivotal roles in infectious immunity. Aeromonas veronii is a zoonotic agent capable of causing sepsis and poses a serious threat to public health. However, few studies have focused on miRNA-mRNA integration analysis to address the immune mechanisms of macrophage response to A. veronii infection. Herein, we characterized the immunophysiological, biochemical, and transcriptome changes of macrophage under A. veronii infection. We found that macrophages infected with A. veronii released large amounts of cytokines and triggered NLRP3-dependent pyroptosis. Subsequently, 603 differentially expressed miRNAs (DEMIs) and 3693 differentially expressed mRNAs (DEMs) were identified by RNA-seq analysis under A. veronii infection. Moreover, integrated analysis of miRNA-mRNA yielded 66 miRNA-target gene pairs composed of 41 DEMIs and 27 DEMs. We next identified the Toll-like receptor, NOD-like receptor, TNF and NF-κB pathways as necessary for macrophage to respond to A. veronii infection. miR-847 and miR-627 were involved in macrophage response to A. veronii infection by negatively regulating Pannexin-1 and thioredoxin interacting protein (TXNIP). Our findings elucidate the molecular mechanism of macrophage response to A. veronii infection at the miRNA level, providing many candidate miRNAs and mRNAs therapeutic targets for the prevention and treatment of A. veornii infectious diseases.
Collapse
Affiliation(s)
- Haichao Song
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China
| | - Han Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Wenfeng Wang
- Ziguang Technology Park Co., Ltd, Weihai, Shandong Provience, 264206, PR China
| | - Shu Li
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China.
| |
Collapse
|
9
|
Yang T, Qiu L, Chen S, Wang Z, Jiang Y, Bai H, Bi Y, Chang G. RNA-Seq Analysis of Glycolysis Regulation of Avian Leukosis Virus Subgroup J Replication. Animals (Basel) 2024; 14:2500. [PMID: 39272286 PMCID: PMC11394362 DOI: 10.3390/ani14172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Avian Leukosis virus (ALV) is a widely spread virus that causes major economic losses to the global poultry industry. This study aims to investigate the effect of glycolysis on the replication of the ALV-J virus and identify the key circular RNAs that regulate the replication of the ALV-J virus. We found that glucose uptake, pyruvate content, and lactate content in DF1 cells were increased after ALV-J infection. Moreover, inhibiting the glycolysis of ALV-J-infected DF1 cells reduced the replication of the ALV-J virus. To further study the mechanism of glycolysis in the replication of the ALV-J virus, we performed RNA-seq on ALV-J-infected and ALV-J-infected cells treated with glycolysis inhibition. RNA-seq results show that a total of 10,375 circular RNAs (circRNAs) were identified, of which the main types were exonic circular RNAs, and 28 circRNAs were differentially expressed between ALV-J-infected and ALV-J-infected cells treated with glycolysis inhibition. Then, we performed functional enrichment analysis of differentially expressed circRNA source and target genes. Functional enrichment analysis indicated that some circRNAs might be involved in regulating the replication of the ALV-J virus by influencing some pathways like glycolysis/gluconeogenesis, the NOD-like receptor signaling pathway, MAPK signaling pathway, p53 signaling pathway, Toll-like receptor signaling pathway, Insulin signaling pathway, and Apoptosis. This study revealed the effect of glycolysis on the replication of the ALV-J virus in DF1 cells and its possible regulatory mechanism, which provided a basis for understanding the factors influencing the replication of the ALV-J virus and reducing the rate of infection of the ALV-J virus in poultry.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Brisse M, Ly H. GBP1, an interferon-inducible GTPase, inhibits Hantaan viral entry by restricting clathrin-mediated endocytosis. J Med Virol 2024; 96:e29818. [PMID: 39011797 DOI: 10.1002/jmv.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Morgan Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
11
|
Gu T, Qu S, Zhang J, Ying Q, Zhang X, Lv Y, Liu R, Feng Y, Wang F, Wu X. Guanylate-binding protein 1 inhibits Hantaan virus infection by restricting virus entry. J Med Virol 2024; 96:e29730. [PMID: 38860570 DOI: 10.1002/jmv.29730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.
Collapse
Affiliation(s)
- Tianle Gu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sirui Qu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Junmei Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an, China
| | - Yunhua Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yunan Feng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Ye W, Xiang N, Wang Q, Lu Y. Role of circular RNA as competing endogenous RNA in ovarian cancer (Review). Int J Mol Med 2024; 53:41. [PMID: 38456562 PMCID: PMC10998717 DOI: 10.3892/ijmm.2024.5365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
Circular RNA (circRNA), a type of non‑coding RNA, plays a regulatory role in biological processes. The special loop structure of circRNA makes it highly stable and specific in diseased tissues and cells, especially in tumors. Competing endogenous RNAs (ceRNAs) compete for the binding of microRNA (miRNA) at specific binding sites and thus regulate gene expression. ceRNAs play an important role in various diseases and are currently recognized as the most prominent mechanism of action of circRNAs. circRNAs can modulate the proliferation, migration, invasion and apoptosis of tumor cells through the ceRNA mechanism. With further research, circRNAs may serve as novel markers and therapeutic targets for ovarian cancer (OC). In the present review, the research progress of circRNAs as ceRNAs in OC was summarized, focusing on the effects of the circRNA/miRNA/mRNA axis on the biological functions of OC cells through mediating pivotal signaling pathways. The role of circRNAs in the diagnosis, prognostic assessment and treatment of OC was also discussed in the present review.
Collapse
Affiliation(s)
- Wanlu Ye
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110003, P.R. China
| | - Nan Xiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110003, P.R. China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110003, P.R. China
| | - Yanming Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110003, P.R. China
| |
Collapse
|
13
|
Ding D, Zhao H, Liu Y, Li S, Wei J, Yang Y, Wang S, Xing G, Hou S, Wang X, Zhang Y. Whole-transcriptome sequencing revealed the role of noncoding RNAs in susceptibility and resistance of Pekin ducks to DHAV-3. Poult Sci 2024; 103:103416. [PMID: 38301494 PMCID: PMC10846394 DOI: 10.1016/j.psj.2023.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
As the most prevalent pathogen of duck viral hepatitis (DVH), duck hepatitis A virus genotype 3 (DHAV-3) has caused huge economic losses to the duck industry in China. Herein, we obtained whole-transcriptome sequencing data of susceptible (S) and resistant (R) Pekin duckling samples at 0 h, 12 h, and 24 h after DHAV-3 infection. We found that DHAV-3 infection induces 5,396 differentially expressed genes (DEGs), 85 differentially expressed miRNAs (DEMs), and 727 differentially expressed lncRNAs (DELs) at 24 hpi in S vs. R ducks, those upregulated genes were enriched in inflammation and cell communications pathways and downregulated genes were related to metabolic processes. Upregulated genes showed high connectivity with the miR-33, miR-193, and miR-11591, and downregulated genes were mainly regulated by miR-2954, miR-125, and miR-146b. With the construction of lncRNA-miRNA-mRNA axis, we further identified a few aberrantly expressed lncRNAs (e.g., MSTRG.36194.1, MSTRG.50601.1, MSTRG.34328.7, and MSTRG.29445.1) that regulate expression of hub genes (e.g., THBD, CLIC2, IL8, ACOX2, GPHN, SMLR1, and HAO1) by sponging those highly connected miRNAs. Altogether, our findings defined a dual role of ncRNAs in immune and metabolic regulation during DHAV-3 infection, suggesting potential new targets for treating DHAV-3 infected ducks.
Collapse
Affiliation(s)
- Dingbang Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haonan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaofei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Shuaiqin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangnan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuisheng Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yunsheng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Wang SS, Wang X, He JJ, Zheng WB, Zhu XQ, Elsheikha HM, Zhou CX. Expression profiles of host miRNAs and circRNAs and ceRNA network during Toxoplasma gondii lytic cycle. Parasitol Res 2024; 123:145. [PMID: 38418741 PMCID: PMC10902104 DOI: 10.1007/s00436-024-08152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
15
|
Wang S, Li X, Liu G, Qiu Z, Wang J, Yang D, Qiao Z, Ma Z, Liu Z, Yang X. Advances in the understanding of circRNAs that influence viral replication in host cells. Med Microbiol Immunol 2024; 213:1. [PMID: 38329596 DOI: 10.1007/s00430-023-00784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3' and 5' ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body's immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.
Collapse
Affiliation(s)
- Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Geng Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenyu Qiu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- China National Biotech Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
16
|
Zhang X, Jiang Y, Yu H, Wang N, Liu X, Cao M, Li C. Comprehensive analysis of circRNA-miRNA-mRNA networks in the kidney of snakehead (Channa argus) response to Nocardia seriolae challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105099. [PMID: 38007095 DOI: 10.1016/j.dci.2023.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Non-coding RNAs (ncRNAs) play vital roles in regulating the expression levels of genes that control essential biological functions, including immune response to bacterial infections in teleost. To dissect the roles of ncRNAs in the Channa argus (snakehead), a systematic analysis of the expression profiles of circRNA, miRNA and mRNA, as well as competing endogenous RNAs (ceRNA) regulatory networks in the kidney of snakehead following Nocardia seriolae infection were performed in the present study. A total of 111 differentially expressed circRNAs, 706 differentially expressed miRNAs, and 2548 differentially expressed mRNAs were identified in the N. seriolae infected snakehead. Based on these differently expressed RNAs, we identified 55 circRNA-mRNA pairs, 124 miRNA-mRNA pairs, and 35 circRNA-miRNA-mRNA regulatory networks, including dre-miR-103-CD302, dre-miR-27e-IGSF3, novel_circ_0005462/novel_403-IGKC, novel_circ_0001750/novel_circ_0002162-novel_477-OCLN, and novel_circ_0003847-novel_4-KCNAB3. In addition, luciferase reporter assay was employed to detect the target relationships of several circRNA-miRNA-mRNA pairs. Taken together, this study demonstrates that the genes associated with immunity and structures in the kidney of snakehead can be regulated by circRNAs and miRNAs at post-transcription levels, and provided theoretical guidance for ncRNAs studies for other teleost. However, further studies are still in great need to validate the regulatory mechanisms of ncRNAs in snakehead.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Haohui Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ningning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiantong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
17
|
Chen M, Kang L, Zhang T, Zheng J, Chen D, Shao D, Li Z, Li B, Wei J, Qiu Y, Feng X, Ma Z, Liu K. Circular RNA network plays a potential antiviral role in the early stage of JEV infection in mouse brain. Front Microbiol 2024; 14:1165378. [PMID: 38249464 PMCID: PMC10797004 DOI: 10.3389/fmicb.2023.1165378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Japanese encephalitis is one of the most important insect-borne infectious disease with public health concern. The virus can break the blood-brain barrier and cause death or long-term sequela in infected humans or animals. Viral encephalitis is an important clinical feature of JEV infection. In recent studies, CircRNAs and related ceRNAs data illustrated the regulative role in many aspects of biological process and disease duration. It is believed that CircRNA regulates JEV infection in a ceRNA-dependent mechanism. In this study, brain tissues of experimental mice were sequenced and analysised. 61 differentially expressed circRNAs, 172 differentially expressed miRNAs and 706 differentially expressed mRNAs were identified by RNA-Sequencing and statistical analysis. CX3CR1 was determined as a key host factor impact JEV infection by microRNA interference measurement. CX3CR1 interaction network indicated circStrbp/miR709/CX3CR1 as a functional regulation axis. Further sequencing in BV2 cell shown CX3CR1 is a special target of miR-709 only during JEV infection. In summary, our study presented a new ceRNA pathway that impact JEV infection in vivo and in vitro, which could be a therapeutic target to fight against JEV.
Collapse
Affiliation(s)
- Mengli Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Key Laboratory of Animal Disease Diagnostic and Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Kang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Key Laboratory of Animal Disease Diagnostic and Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xiuli Feng
- Key Laboratory of Animal Disease Diagnostic and Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| |
Collapse
|
18
|
Liang Y, Zhan J, Shi H, Ye W, Zhang K, Li J, Wang W, Wang P, Zhang Y, Lian J, Zheng X. The Role of Long Noncoding RNA Negative Regulator of Interferon Response in the Regulation of Hantaan Virus Infection. Viral Immunol 2024; 37:44-56. [PMID: 38324005 DOI: 10.1089/vim.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Hantaan virus (HTNV) is prevalent in Eurasia. It causes hemorrhagic fever with renal syndrome (HFRS). Long noncoding RNAs (lncRNAs) play key roles in regulating innate immunity. Among these, lncRNA negative regulator of interferon response (NRIR) was reported as an inhibitor of several interferon (IFN)-stimulated genes. Our results showed that: NRIR expression was upregulated by HTNV infection in a type I IFN-dependent manner. The expression of NRIR in CD14+ monocytes from HFRS patients in acute phase was significantly higher than that in convalescent phase and healthy controls. HTNV infection in some HTNV-compatible cells was promoted by NRIR. NRIR negatively regulated innate immunity, especially IFITM3 expression. Localized in the nucleus, NRIR bound with HNRNPC, and knockdown of HNRNPC significantly weakened the effect of NRIR in promoting HTNV infection and restored IFITM3 expression. These results indicated that NRIR regulates the innate immune response against HTNV infection possibly through its interaction with HNRNPC and its influence on IFITM3.
Collapse
Affiliation(s)
- Yan Liang
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiayi Zhan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hongyan Shi
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Medical College of Yan'an University, Yan'an, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kaixuan Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Medical College of Yan'an University, Yan'an, China
| | - Jiayu Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Pingzhong Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
19
|
Massu A, Mahanil K, Limkul S, Phiwthong T, Boonanuntanasarn S, Teaumroong N, Somboonwiwat K, Boonchuen P. Identification of immune-responsive circular RNAs in shrimp (Litopenaeus vannamei) upon yellow head virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109246. [PMID: 38013134 DOI: 10.1016/j.fsi.2023.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs (ncRNAs) formed through a process known as back-splicing. They play a crucial role in the genetic regulation of various biological processes. Currently, circRNAs have been identified as participants in the antiviral response within mammalian cells. However, circRNAs in shrimp infected with the yellow head virus (YHV) remain largely unexplored. Therefore, this study aims to identify circRNAs in the hemocytes of Litopenaeus vannamei during YHV infection. We discovered 358 differentially expressed circRNAs (DECs), with 177 of them being up-regulated and 181 down-regulated. Subsequently, eight DECs, including circ_alpha-1-inhibitor 3, circ_CDC42 small effector protein 2, circ_hemicentin 2, circ_integrin alpha V, circ_kazal-type proteinase inhibitor, circ_phenoloxidase 3, circ_related protein rab-8B, and circ_protein toll-like, were randomly selected for analysis of their expression patterns during YHV infection using qRT-PCR. Furthermore, the circRNAs' characteristics were confirmed through PCR, RNase R treatment, and Sanger sequencing, all of which were consistent with the features of circRNAs. These findings contribute to a better understanding of circRNAs' involvement in the antiviral response in shrimp.
Collapse
Affiliation(s)
- Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kanjana Mahanil
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
20
|
Kang L, Xie H, Ye H, Jeyarajan AJ, Warner CA, Huang Y, Shi Y, Li Y, Yang C, Xu M, Lin W, Sun J, Chen L, Duan X, Li S. Hsa_circ_0007321 regulates Zika virus replication through miR-492/NFKBID/NF-κB signaling pathway. J Virol 2023; 97:e0123223. [PMID: 38051045 PMCID: PMC10734422 DOI: 10.1128/jvi.01232-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Over the past decade, increasing evidence has shown that circular RNAs (circRNAs) play important regulatory roles in viral infection and host antiviral responses. However, reports on the role of circRNAs in Zika virus (ZIKV) infection are limited. In this study, we identified 45 differentially expressed circRNAs in ZIKV-infected A549 cells by RNA sequencing. We clarified that a downregulated circRNA, hsa_circ_0007321, regulates ZIKV replication through targeting of miR-492 and the downstream gene NFKBID. NFKBID is a negative regulator of nuclear factor-κB (NF-κB), and we found that inhibition of the NF-κB pathway promotes ZIKV replication. Therefore, this finding that hsa_circ_0007321 exerts its regulatory role on ZIKV replication through the miR-492/NFKBID/NF-κB signaling pathway has implications for the development of strategies to suppress ZIKV and possibly other viral infections.
Collapse
Affiliation(s)
- Lan Kang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - He Xie
- The Hospital of Xidian Group, Xian, Shaanxi, China
| | - Haiyan Ye
- Department of Laboratory Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Andre J. Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte A. Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yike Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Yaoqiang Shi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jujun Sun
- The Hospital of Xidian Group, Xian, Shaanxi, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- The Hospital of Xidian Group, Xian, Shaanxi, China
- Joint Laboratory on Transfusion-transmitted Infectious Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Nanning City, Nanning, Guangxi, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Liu X, Xiong W, Ye M, Lu T, Yuan K, Chang S, Han Y, Wang Y, Lu L, Bao Y. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Signal Transduct Target Ther 2023; 8:441. [PMID: 38057315 PMCID: PMC10700414 DOI: 10.1038/s41392-023-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Wandi Xiong
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Yongxiang Wang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- School of Public Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
22
|
Kazemi S, Mirzaei R, Karampoor S, Hosseini-Fard SR, Ahmadyousefi Y, Soltanian AR, Keramat F, Saidijam M, Alikhani MY. Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microb Pathog 2023; 185:106459. [PMID: 37995882 DOI: 10.1016/j.micpath.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.
Collapse
Affiliation(s)
- Sima Kazemi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Iran
| | - Fariba Keramat
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
23
|
Sberna G, Maggi F, Amendola A. Virus-Encoded Circular RNAs: Role and Significance in Viral Infections. Int J Mol Sci 2023; 24:16547. [PMID: 38003737 PMCID: PMC10671809 DOI: 10.3390/ijms242216547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) have been the focus of intense scientific research to understand their biogenesis, mechanisms of action and regulatory functions. CircRNAs are single stranded, covalently closed RNA molecules lacking the 5'-terminal cap and the 3'-terminal polyadenine chain, characteristics that make them very stable and resistant. Synthesised by both cells and viruses, in the past circRNAs were considered to have no precise function. Today, increasing evidence shows that circRNAs are ubiquitous, some of them are tissue- and cell-specific, and critical in multiple regulatory processes (i.e., infections, inflammation, oncogenesis, gene expression). Moreover, circRNAs are emerging as important biomarkers of viral infection and disease progression. In this review, we provided an updated overview of current understanding of virus-encoded and cellular-encoded circRNAs and their involvement in cellular pathways during viral infection.
Collapse
Affiliation(s)
| | | | - Alessandra Amendola
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (G.S.)
| |
Collapse
|
24
|
Fan L, Ren J, Wang Y, Chen Y, Chen Y, Chen L, Lin Q, Liao M, Ding C, Xiang B, Ren T. Circular RNAs are associated with the resistance to Newcastle disease virus infection in duck cells. Front Vet Sci 2023; 10:1181916. [PMID: 37841466 PMCID: PMC10570413 DOI: 10.3389/fvets.2023.1181916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Newcastle disease virus (NDV) is prevalent worldwide with an extensive host range. Among birds infected with velogenic NDV strains, chickens experience high pathogenicity and mortality, whereas ducks mostly experience mild symptoms or are asymptomatic. Ducks have a unique, innate immune system hypothesized to induce antiviral responses. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. These participate in innate immunity and host antiviral response progression. Methods In this study, circRNA expression profile differences post-NDV infection in duck embryo fibroblast (DEF) cells were analyzed using circRNA transcriptome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA-miRNA-mRNA interaction networks were used to predict the related functions of circRNAs. Moreover, circ-FBXW7 was selected to determine its effect on NDV infection in DEFs. Results NDV infection altered circRNA expression profiles in DEF cells, and 57 significantly differentially expressed circRNAs were identified post-NDV infection. DEF responded to NDV by forming circRNAs to regulate apoptosis-, cell growth-, and protein degradation-related pathways via GO and KEGG enrichment analyses. circRNA-miRNA-mRNA interaction networks demonstrated that DEF cells combat NDV infection by regulating cellular pathways or apoptosis through circRNA-targeted mRNAs and miRNAs. circ-FBXW7 overexpression and knockdown inhibited and promoted viral replication, respectively. DEF cells mainly regulated cell cycle alterations or altered cellular sensing to combat NDV infection. Conclusion These results demonstrate that DEF cells exert antiviral responses by forming circRNAs, providing novel insights into waterfowl antiviral responses.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yinchu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yiyi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yichun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
25
|
Liu T, Li Y, Wang L, Zhang X, Zhang Y, Gai X, Chen L, Liu L, Yang L, Wang B. Network pharmacology-based exploration identified the antiviral efficacy of Quercetin isolated from mulberry leaves against enterovirus 71 via the NF-κB signaling pathway. Front Pharmacol 2023; 14:1260288. [PMID: 37795035 PMCID: PMC10546324 DOI: 10.3389/fphar.2023.1260288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Mulberry leaf (ML) is known for its antibacterial and anti-inflammatory properties, historically documented in "Shen Nong's Materia Medica". This study aimed to investigate the effects of ML on enterovirus 71 (EV71) using network pharmacology, molecular docking, and in vitro experiments. Methods: We successfully pinpointed shared targets between mulberry leaves (ML) and the EV71 virus by leveraging online databases. Our investigation delved into the interaction among these identified targets, leading to the identification of pivotal components within ML that possess potent anti-EV71 properties. The ability of these components to bind to the targets was verified by molecular docking. Moreover, bioinformatics predictions were used to identify the signaling pathways involved. Finally, the mechanism behind its anti-EV71 action was confirmed through in vitro experiments. Results: Our investigation uncovered 25 active components in ML that targeted 231 specific genes. Of these genes, 29 correlated with the targets of EV71. Quercetin, a major ingredient in ML, was associated with 25 of these genes. According to the molecular docking results, Quercetin has a high binding affinity to the targets of ML and EV71. According to the KEGG pathway analysis, the antiviral effect of Quercetin against EV71 was found to be closely related to the NF-κB signaling pathway. The results of immunofluorescence and Western blotting showed that Quercetin significantly reduced the expression levels of VP1, TNF-α, and IL-1β in EV71-infected human rhabdomyosarcoma cells. The phosphorylation level of NF-κB p65 was reduced, and the activation of NF-κB signaling pathway was suppressed by Quercetin. Furthermore, our results showed that Quercetin downregulated the expression of JNK, ERK, and p38 and their phosphorylation levels due to EV71 infection. Conclusion: With these findings in mind, we can conclude that inhibiting the NF-κB signaling pathway is a critical mechanism through which Quercetin exerts its anti-EV71 effectiveness.
Collapse
Affiliation(s)
- Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lumeng Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| | | | - Yuxuan Zhang
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Xuejie Gai
- The Affiliated First Hospital, Jiamusi University, Jiamusi, China
| | - Li Chen
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian, China
| | - Baixin Wang
- School of Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
26
|
Maarouf M, Wang L, Wang Y, Rai KR, Chen Y, Fang M, Chen JL. Functional Involvement of circRNAs in the Innate Immune Responses to Viral Infection. Viruses 2023; 15:1697. [PMID: 37632040 PMCID: PMC10458642 DOI: 10.3390/v15081697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Effective viral clearance requires fine-tuned immune responses to minimize undesirable inflammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukaryotic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in high-throughput sequencing has enabled a better understanding of the physiological and pathophysiological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replication or disease progression. There is increasing evidence that viral infections dysregulate circRNA expression and that the altered expression of circRNAs is critical in regulating viral infection and replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates due to their higher stability and lower immunogenicity. This review presents an up-to-date summary of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current understanding of their regulatory roles, and the suggested applications.
Collapse
Affiliation(s)
- Mohamed Maarouf
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lulu Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiming Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology, ShiGan International College of Science and Technology/ShiGan Health Foundation, Narayangopal Chowk, Kathmandu 44600, Nepal
| | - Yuhai Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Gan T, Yu J, He J. miRNA, lncRNA and circRNA: targeted molecules with therapeutic promises in Mycoplasma pneumoniae infection. Arch Microbiol 2023; 205:293. [PMID: 37477725 DOI: 10.1007/s00203-023-03636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Mycoplasma pneumoniae (MP) is primarily recognized as a respiratory pathogen that causes community-acquired pneumonia, which can lead to acute upper and lower airway inflammation and extrapulmonary syndrome. Refractory pneumonia caused by MP can cause severe complications and even be life-threatening, particularly in infants and the elderly. It is well-known that non-coding RNAs (ncRNAs) represented by miRNAs, lncRNAs and circRNAs have been manifested to be widely involved in the regulation of gene expression. Growing evidence indicates that these ncRNAs have distinct differentiated expression in MP infection and affect multiple biological processes, playing an indispensable role in the initiation and promotion of MP infection. However, the epigenetic mechanisms involved in the development of MP infection remain unclear. This article reviews the mechanisms by which miRNAs, lncRNAs, and circRNAs mediate MP infection, such as inflammatory responses, apoptosis and pulmonary fibrosis. Focusing on miRNAs, lncRNAs and circRNAs associated with MP infection could provide new insights into this disease's early diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Tian Gan
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
28
|
Liu YT, Xu Z, Liu W, Ren S, Xiong HW, Jiang T, Chen J, Kang Y, Li QY, Wu ZH, Machens HG, Yang XF, Chen ZB. The circ_0002538/miR-138-5p/plasmolipin axis regulates Schwann cell migration and myelination in diabetic peripheral neuropathy. Neural Regen Res 2023; 18:1591-1600. [PMID: 36571367 PMCID: PMC10075099 DOI: 10.4103/1673-5374.355979] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Circular RNAs (circRNAs) play a vital role in diabetic peripheral neuropathy. However, their expression and function in Schwann cells in individuals with diabetic peripheral neuropathy remain poorly understood. Here, we performed protein profiling and circRNA sequencing of sural nerves in patients with diabetic peripheral neuropathy and controls. Protein profiling revealed 265 differentially expressed proteins in the diabetic peripheral neuropathy group. Gene Ontology indicated that differentially expressed proteins were mainly enriched in myelination and mitochondrial oxidative phosphorylation. A real-time polymerase chain reaction assay performed to validate the circRNA sequencing results yielded 11 differentially expressed circRNAs. circ_0002538 was markedly downregulated in patients with diabetic peripheral neuropathy. Further in vitro experiments showed that overexpression of circ_0002538 promoted the migration of Schwann cells by upregulating plasmolipin (PLLP) expression. Moreover, overexpression of circ_0002538 in the sciatic nerve in a streptozotocin-induced mouse model of diabetic peripheral neuropathy alleviated demyelination and improved sciatic nerve function. The results of a mechanistic experiment showed that circ_0002538 promotes PLLP expression by sponging miR-138-5p, while a lack of circ_0002538 led to a PLLP deficiency that further suppressed Schwann cell migration. These findings suggest that the circ_0002538/miR-138-5p/PLLP axis can promote the migration of Schwann cells in diabetic peripheral neuropathy patients, improving myelin sheath structure and nerve function. Thus, this axis is a potential target for therapeutic treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Yu-Tian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - He-Wei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qian-Yun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zi-Han Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hans-GüNther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Xiao-Fan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen-Bing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
29
|
Tan T, Ma M, Xing S. Effect of circ_0000009 on lung adenocarcinoma progression by regulating PDZD2 in a ceRNA- and RBP- dependent manner. Gene 2023:147555. [PMID: 37307895 DOI: 10.1016/j.gene.2023.147555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence now demonstrated that circular RNAs (circRNAs) are closely related to the pathogenesis of lung adenocarcinoma (LUAD). Through GEO2R online analysis, we screened hsa_circ_0000009 (circ_0000009) from the GEO database (GSE158695), and its expression in LUAD cancer tissues and cell lines was detected by RT-qPCR. The looping structure of circ_0000009 was tested by RNase R and actinomycin D experiments. The changes of proliferation were tested by CCK-8 or EdU assay. And the changes of apoptosis in A549 and H1299 cells were measured via flow cytometry. The A549 BALB/c tumor model was established to evaluate the influence of circ_0000009 on LUAD cell growth in vivo. In addition, experiments connected with ceRNA direction (mainly including bioinformatics prediction and luciferase reporter assay) and RNA Binding Protein (RBP) direction (mainly including RNA pull-down assay, RIP assay and mRNA stability assay) were further developed to reveal the regulatory mechanism of circ_0000009. The gene and protein levels in this project were assessed by RT-qPCR and western blotting analysis, respectively. The data manifested that circ_0000009 was in low expression in LUAD. The in vitro and in vivo experiments threw light on that overexpression of circ_0000009 dramatically suppressing LUAD tumorigenesis. Mechanistically, circ_0000009 promoted the expression of PDZD2 by sponging miR-154-3p. Furthermore, circ_0000009 stabilized PDZD2 by recruiting IGF2BP2. This study illustrated the mechanism that overexpressing of circ_0000009 suppressed LUAD progression by upregulating PDZD2 expression, providing an original treatment direction for LUAD.
Collapse
Affiliation(s)
- Tan Tan
- Department of Thoracic Surgery, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Ma
- Department of Respiratory, the first People's Hospital of Xining, Xining, China
| | - Shigui Xing
- Department of Thoracic Surgery, Nanjing Gaochun People's Hospital, Nanjing, China.
| |
Collapse
|
30
|
Xu X, Deng L, Tang Y, Li J, Zhong T, Hao X, Fan Y, Mu S. Cytostatic Activity of Sanguinarine and a Cyanide Derivative in Human Erythroleukemia Cells Is Mediated by Suppression of c-MET/MAPK Signaling. Int J Mol Sci 2023; 24:ijms24098113. [PMID: 37175820 PMCID: PMC10179035 DOI: 10.3390/ijms24098113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Sanguinarine (1) is a natural product with significant pharmacological effects. However, the application of sanguinarine has been limited due to its toxic side effects and a lack of clarity regarding its molecular mechanisms. To reduce the toxic side effects of sanguinarine, its cyanide derivative (1a) was first designed and synthesized in our previous research. In this study, we confirmed that 1a presents lower toxicity than sanguinarine but shows comparable anti-leukemia activity. Further biological studies using RNA-seq, lentiviral transfection, Western blotting, and flow cytometry analysis first revealed that both compounds 1 and 1a inhibited the proliferation and induced the apoptosis of leukemic cells by regulating the transcription of c-MET and then suppressing downstream pathways, including the MAPK, PI3K/AKT and JAK/STAT pathways. Collectively, the data indicate that 1a, as a potential anti-leukemia lead compound regulating c-MET transcription, exhibits better safety than 1 while maintaining cytostatic activity through the same mechanism as 1.
Collapse
Affiliation(s)
- Xinglian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Lulu Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Yaling Tang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
- Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, China
| | - Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
- Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, China
| | - Yanhua Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Beijin Road, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Beijin Road, Guiyang 550014, China
| |
Collapse
|
31
|
Miao Z, Zhao X, Liu X. Exosomal circCOL1A2 from cancer cells accelerates colorectal cancer progression via regulating miR-665/LASP1 signal axis. Eur J Pharmacol 2023; 950:175722. [PMID: 37059374 DOI: 10.1016/j.ejphar.2023.175722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Circular RNAs (circRNAs) have been demonstrated to exert pivotal functions in cancer progression but are poorly understood in colorectal cancer (CRC). This work intends to investigate the effect and mechanism of a novel cirRNA (circCOL1A2) in CRC. Exosomes were identified via transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA). Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to analyze the levels of genes and proteins. Proliferation, migration, and invasion were detected via cell counting kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EDU), and transwell experiments. RNA pull-down, luciferase reporter, and RNA immunoprecipitation (RIP) assays were performed to assess the binding between genes. Animal studies were carried out to evaluate the function of circCOL1A2 in vivo. We found that circCOL1A2 was highly expressed in CRC cells. And circCOL1A2 was packaged from cancerous cells into exosomes. The proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) properties were inhibited after the reduction of exosomal circCOL1A2. Mechanism studies proved the binding of miR-665 with circCOL1A2 or LASP1 Rescue experiments validated the reverse effects of miR-665 knockdown on circCOL1A2 silencing and LASP1 overexpression on miR-665. Animal studies further confirmed the oncogenic function of exosomal circCOL1A2 in CRC tumorigenesis. In conclusion, exosomal circCOL1A2 sponges miR-665 to enhance LASP1 expression and modulated CRC phenotypes. Thus, circCOL1A2 might be a valuable therapeutic target for CRC, offering novel insight into CRC treatment.
Collapse
Affiliation(s)
- Zhi Miao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Xiaomeng Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Liu
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
32
|
Gao C, Cai X, Ma L, Sun P, Li C. Systematic analysis of circRNA-related ceRNA networks of black rockfish (Sebastes schlegelii) in response to Aeromonas salmonicides infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108648. [PMID: 36842642 DOI: 10.1016/j.fsi.2023.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Aeromonas salmonicides is a type of Gram-negative bacteria and has become the main fish pathogen in aquaculture because of its characteristics of worldwide distribution, broad host range and potentially devastating impacts. In the past years, studies have been focused to explore the regulatory roles of circRNA-miRNA-mRNA network in fish diseases. However, there are only few systematic studies linked to the anti-bacterial roles of circRNA-related ceRNA networks in the spleen immune system of black rockfish (Sebastes schlegelii). In this study, the whole-transcriptome sequencing (RNA-seq) was conducted in the black rockfish spleen with A. salmonicida challenging. The differentially expressed (DE) circRNAs were identified comprehensively for the following enrichment analysis. Interactions of miRNA-circRNA pairs and miRNA-mRNA pairs were predicted for the construction of circRNA-related ceRNA regulatory networks. Then, protein-protein interaction (PPI) analysis of mRNAs from these ceRNA networks were conducted. Finally, a total number of 39 circRNAs exhibited significantly differential expressions during A. salmonicida infection in the black rockfish spleen in 4338 identified circRNAs from 12 samples in 4 libraries. Functional enrichment analysis suggested that they were significantly enriched in several immune-related pathways, including Endocytosis, FoxO signaling pathway, Jak-STST signaling pathway, Herpes simplex infection, etc. Subsequently, 290 circRNA-miRNA-mRNA pathways (91 at 2 h, 142 at 12 h and 65 at 24 h) were constructed including 31 circRNAs, 50 miRNAs, and 156 mRNAs. In conclusion, the circRNA-related ceRNA networks were established, which will provide some novel insights in molecular mechanistic investigations of anti-bacterial immune response in teleost. Also, these findings will propose significant predictive values for the development of methods of treatment and prevention in black rockfish after bacterial infection in the future.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Peng Sun
- Shandong Weifang Ecological Environment Monitoring Center, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
33
|
Chen L, Ruan J, Chen Y, Deng W, Lai J, Fan L, Cai J, Ding C, Lin Q, Xiang B, Ren T. RNA sequencing reveals CircRNA expression profiles in chicken embryo fibroblasts infected with velogenic Newcastle disease virus. Front Vet Sci 2023; 10:1167444. [PMID: 37065234 PMCID: PMC10090683 DOI: 10.3389/fvets.2023.1167444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionNewcastle disease virus (NDV) is an important avian pathogen prevalent worldwide; it has an extensive host range and seriously harms the poultry industry. Velogenic NDV strains exhibit high pathogenicity and mortality in chickens. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. They are part of the innate immunity and antiviral response. However, the relationship between circRNAs and NDV infection is unclear.MethodsIn this study, we used circRNA transcriptome sequencing to analyze the differences in circRNA expression profiles post velogenic NDV infection in chicken embryo fibroblasts (CEFs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA- miRNA-mRNA interaction networks were further predicted. Moreover, circ-EZH2 was selected to determine its effect on NDV infection in CEFs.ResultsNDV infection altered circRNA expression profiles in CEFs, and 86 significantly DE circRNAs were identified. GO and KEGG enrichment analyses revealed significant enrichment of DE circRNAs for metabolism-related pathways, such as lysine degradation, glutaminergic synapse, and alanine, aspartic-acid, and glutamic-acid metabolism. The circRNA- miRNA-mRNA interaction networks further demonstrated that CEFs might combat NDV infection by regulating metabolism through circRNA-targeted mRNAs and miRNAs. Furthermore, we verified that circ-EZH2 overexpression and knockdown inhibited and promoted NDV replication, respectively, indicating that circRNAs are involved in NDV replication.ConclusionsThese results demonstrate that CEFs exert antiviral responses by forming circRNAs, offering new insights into the mechanisms underlying NDV-host interactions.
Collapse
Affiliation(s)
- Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jiayu Ruan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yiyi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenxuan Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinyu Lai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Bin Xiang
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Tao Ren
| |
Collapse
|
34
|
Exosomal miRNA-155 and miRNA-146a are promising prognostic biomarkers of the severity of hemorrhagic fever with renal syndrome. Noncoding RNA Res 2023; 8:75-82. [DOI: 10.1016/j.ncrna.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
|
35
|
Genome-wide identification and functional analysis of circRNAs in Trichophyton mentagrophytes spores and hyphae. Microb Pathog 2023; 176:106003. [PMID: 36702368 DOI: 10.1016/j.micpath.2023.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
|
36
|
Qiu H, Yang B, Chen Y, Zhu Q, Wen F, Peng M, Wang G, Guo G, Chen B, Maarouf M, Fang M, Chen JL. Influenza A Virus-Induced circRNA circMerTK Negatively Regulates Innate Antiviral Responses. Microbiol Spectr 2023; 11:e0363722. [PMID: 36847523 PMCID: PMC10100971 DOI: 10.1128/spectrum.03637-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
Circular RNAs (circRNAs) are an important subclass of noncoding RNAs implicated in the regulation of multiple biological processes. However, the functional involvement of circRNAs in the pathogenesis of influenza A viruses (IAVs) remains largely unknown. Here, we employed RNA sequencing (RNA-Seq) to examine the differentially expressed circRNAs in mouse lung tissues challenged or not challenged with IAV to evaluate the impact of viral infection on circRNAs in vivo. We observed that 413 circRNAs exhibited significantly altered levels following IAV infection. Among these, circMerTK, the derivative of myeloid-epithelial-reproductive tyrosine kinase (MerTK) pre-mRNA, was highly induced by IAV. Interestingly, circMerTK expression was also increased upon infection with multiple DNA and RNA viruses in human and animal cell lines, and thus it was selected for further studies. Poly(I:C) and interferon β (IFN-β) stimulated circMerTK expression, while RIG-I knockout and IFNAR1 knockout cell lines failed to elevate circMerTK levels after IAV infection, demonstrating that circMerTK is regulated by IFN signaling. Furthermore, circMerTK overexpression or silencing accelerated or impeded IAV and Sendai virus replication, respectively. Silencing circMerTK enhanced the production of type I IFNs and interferon-stimulating genes (ISGs), whereas circMerTK overexpression suppressed their expression at both the mRNA and protein levels. Notably, altering circMerTK expression had no effect on the MerTK mRNA level in cells infected or not infected with IAV, and vice versa. In addition, human circMerTK and mouse homologs functioned similarly in antiviral responses. Together, these results identify circMerTK as an enhancer of IAV replication through suppression of antiviral immunity. IMPORTANCE CircRNAs are an important class of noncoding RNAs characterized by a covalently closed circular structure. CircRNAs have been proven to impact numerous cellular processes, where they conduct specialized biological activities. In addition, circRNAs are believed to play a crucial role in regulating immune responses. Nevertheless, the functions of circRNAs in the innate immunity against IAV infection remain obscure. In this study, we employed transcriptomic analysis to investigate the alterations in circRNAs expression following IAV infection in vivo. It was found that expression of 413 circRNAs was significantly altered, of which 171 were upregulated, and 242 were downregulated following the IAV infection. Interestingly, circMerTK was identified as a positive regulator of IAV replication in both human and mouse hosts. CircMerTK was shown to influence IFN-β production and its downstream signaling, enhancing IAV replication. This finding provides new insights into the critical roles of circRNAs in regulating antiviral immunity.
Collapse
Affiliation(s)
- Haori Qiu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qianwen Zhu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Faxin Wen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Peng
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqing Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Sun H, Ma Y, Yang Y, Sun C, Li H. Genome-wide characterization of circRNA expression profile in overexpression of RIP2 chicken macrophages associated with avian pathogenic E.coli infection. Avian Pathol 2023; 52:62-77. [PMID: 36399118 DOI: 10.1080/03079457.2022.2144132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Avian pathogenic E. coli (APEC) can cause localized and systemic diseases in poultry, threatening human health via meat or egg contamination and resulting in considerable economic losses to the poultry industry globally. Increasing evidence shows circRNAs were widely involved in various biological processes. However, the role of circRNAs in the host response against APEC infection, especially correlated with the regulation of RIP2, remains unclear. Herein, the RNAseq technology was used to identify the circRNA expression profiles in the overexpression of RIP2 macrophages with or without APEC infection. A total of 256 and 287 differentially expressed (DE) circRNAs were identified in the overexpression of RIP2 group (oeRIP2) vs. the wild-type group (WT) and oeRIP2 + APEC vs. APEC, respectively, whose parental genes were involved in MAPK signalling pathway, Wnt signalling pathway, focal adhesion, tight junction, and VEGF signalling pathways. Specifically, the key circRNAs, such as 5:814443-825127, 10:18922360-18928461, 2:8746306-8750639, and 2:124177751-124184063 might play a critical role in APEC infection and the regulation of RIP2. As a whole, these findings will facilitate understanding the molecular mechanism underlying circRNAs, especially related to the regulation of the RIP2 gene. Meanwhile, the study may offer new ideas to improve host immune and inflammatory response against APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, People's Republic of China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Changhua Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, People's Republic of China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
38
|
Ayaz H, Aslam N, Awan FM, Basri R, Rauff B, Alzahrani B, Arif M, Ikram A, Obaid A, Naz A, Khan SN, Yang BB, Nazir A. Mapping CircRNA-miRNA-mRNA regulatory axis identifies hsa_circ_0080942 and hsa_circ_0080135 as a potential theranostic agents for SARS-CoV-2 infection. PLoS One 2023; 18:e0283589. [PMID: 37053191 PMCID: PMC10101458 DOI: 10.1371/journal.pone.0283589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) can control the flux of genetic information; affect RNA stability and play crucial roles in mediating epigenetic modifications. A number of studies have highlighted the potential roles of both virus-encoded and host-encoded ncRNAs in viral infections, transmission and therapeutics. However, the role of an emerging type of non-coding transcript, circular RNA (circRNA) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been fully elucidated so far. Moreover, the potential pathogenic role of circRNA-miRNA-mRNA regulatory axis has not been fully explored as yet. The current study aimed to holistically map the regulatory networks driven by SARS-CoV-2 related circRNAs, miRNAs and mRNAs to uncover plausible interactions and interplay amongst them in order to explore possible therapeutic options in SARS-CoV-2 infection. Patient datasets were analyzed systematically in a unified approach to explore circRNA, miRNA, and mRNA expression profiles. CircRNA-miRNA-mRNA network was constructed based on cytokine storm related circRNAs forming a total of 165 circRNA-miRNA-mRNA pairs. This study implies the potential regulatory role of the obtained circRNA-miRNA-mRNA network and proposes that two differentially expressed circRNAs hsa_circ_0080942 and hsa_circ_0080135 might serve as a potential theranostic agents for SARS-CoV-2 infection. Collectively, the results shed light on the functional role of circRNAs as ceRNAs to sponge miRNA and regulate mRNA expression during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hassan Ayaz
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nouman Aslam
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Bisma Rauff
- Department of Biomedical Engineering, University of Engineering and Technology (UET), Lahore, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Arif
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Azhar Nazir
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
39
|
Limkul S, Phiwthong T, Massu A, Boonanuntanasarn S, Teaumroong N, Somboonwiwat K, Boonchuen P. Transcriptome-based insights into the regulatory role of immune-responsive circular RNAs in Litopanaeus vannamei upon WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108499. [PMID: 36549581 DOI: 10.1016/j.fsi.2022.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) originating from a post-transcriptional modification process called back-splicing. Despite circRNAs being traditionally considered by-products rather than independently functional, circRNAs play many vital roles, such as in host immunity during viral infection. However, in shrimp, these remain largely unexplored. Therefore, this study aims to identify circRNAs in Litopenaeus vannamei in the context of WSSV infection, one of the most eradicative pathogens threatening shrimp populations worldwide. We identified 290 differentially expressed circRNAs (DECs) in L. vannamei upon WSSV infection. Eight DECs were expressed from their parental genes, including alpha-1-inhibitor-3, calpain-B, integrin-V, hemicentin-2, hemocytin, mucin-17, proPO2, and rab11-FIP4. These were examined quantitatively by qRT-PCR, which revealed the relevant expression profiles to those obtained from circRNA-Seq. Furthermore, the structural and chemical validation of the DECs conformed to the characteristics of circRNAs. One of the functional properties of circRNAs as a miRNA sponge was examined via the interaction network between DECs and WSSV-responsive miRNAs, which highlighted the targets of miRNA sponges. Our discovery could provide insight into the participation of these ncRNAs in shrimp antiviral responses.
Collapse
Affiliation(s)
- Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
40
|
Ye Y, Fan X, Cai Z, Wu Y, Zhang W, Zhao H, Guo S, Feng P, Li Q, Zou P, Chen M, Fan N, Chen D, Guo R. Unveiling the circRNA-Mediated Immune Responses of Western Honey Bee Larvae to Ascosphaera apis Invasion. Int J Mol Sci 2022; 24:613. [PMID: 36614055 PMCID: PMC9820429 DOI: 10.3390/ijms24010613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Western honey bee (Apis mellifera), a eusocial insect with a superior economic and ecological value, is widely used in the beekeeping industry throughout the world. As a new class of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) participate in the modulation of considerable biological processes, such as the immune response via diverse manners. Here, the identification, characteristic investigation, and molecular verification of circRNAs in the Apis mellifera ligustica larval guts were conducted, and the expression pattern of larval circRNAs during the Ascosphaera apis infection was analyzed, followed by the exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 2083 circRNAs in the larval guts of A. m. ligustcia were identified, with a length distribution ranging from 106 nt to 92,798 nt. Among these, exonic circRNAs were the most abundant type and LG1 was the most distributed chromosome. Additionally, 25, 14, and 30 up-regulated circRNAs as well as 26, 25, and 62 down-regulated ones were identified in the A. apis-inoculated 4-, 5-, and 6-day-old larval guts in comparison with the corresponding un-inoculated larval guts. These DEcircRNAs were predicted to target 35, 70, and 129 source genes, which were relative to 12, 23, and 20 GO terms as well as 11, 10, and 27 KEGG pathways, including 5 cellular and humoral immune pathways containing apoptosis, autophagy, endocytosis, MAPK, Toll, and Imd signaling pathways. Furthermore, complex competing endogenous RNA (ceRNA) regulatory networks were detected to be formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The Target DEmRNAs were engaged in 24, 20, and 25 functional terms as well as 62, 80, and 159 pathways, including several vital immune defense-associated pathways, namely the lysosome, endocytosis, phagosome, autophagy, apoptosis, MAPK, Jak-STAT, Toll, and Imd signaling pathways. Finally, back-splicing sites within 15 circRNAs and the difference in the 9 DEcircRNAs' expression between un-inoculated and A. apis-inoculated larval guts were confirmed utilizing molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions, but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. m. ligustica larvae against A. apis invasion.
Collapse
Affiliation(s)
- Yaping Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zongbing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjun Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nian Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
41
|
Long X, Wang D, Wu Z, Liao Z, Xu J. Circular RNA hsa_circ_0004689 (circSWT1) promotes NSCLC progression via the miR‐370‐3p/SNAIL axis by inducing cell epithelial‐mesenchymal transition (EMT). Cancer Med 2022; 12:8289-8305. [PMID: 36530171 PMCID: PMC10134258 DOI: 10.1002/cam4.5527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies have reported the role of circular RNAs (circRNAs) in the progression of non-small-cell lung cancer (NSCLC). SWT1-derived circRNAs were confirmed to affect the apoptosis of cardiomyocytes; however, the biological functions of SWT1-derived circRNAs in cancers are still unknown. Here, we investigated the potential role of SWT1-derived circRNAs in NSCLC. METHODS We used quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression of circSWT1 in NSCLC tissues and paired normal tissues. The potential functions of circSWT1 in tumor progression were assessed by CCK-8, colony formation, wound healing, and matrigel transwell assays in vitro and by xenograft tumor models in vivo. Next, epithelial-mesenchymal transition (EMT) was evaluated by western blotting, immunofluorescence, and immunohistochemistry (IHC). Moreover, circRIP, RNA pulldown assays, luciferase reporter gene assays, and FISH were conducted to illuminate the molecular mechanisms of circSWT1 via the miR-370-3p/SNAIL signal pathway. Then, we knocked out SNAIL in A549 and H1299 cells to identify the roles of circSWT1 in the progression and EMT of NSCLC through SNAIL. Finally, circSWT1 functions were confirmed in vivo using xenograft tumor models. RESULTS CircSWT1 expression was significantly upregulated in NSCLC tissues, and high expression of circSWT1 predicted poor prognosis in NSCLC via survival analysis. In addition, overexpression of circSWT1 promoted the invasion and migration of NSCLC cells. Subsequently, we found that overexpression of circSWT1 induced EMT and that knockdown of circSWT1 inhibited EMT in NSCLC cells. Mechanistically, circSWT1 relieved the inhibition of downstream SNAIL by sponging miR-370-3p. Moreover, we found that these effects could be reversed by knocking out SNAIL. Finally, we verified that circSWT1 promoted NSCLC progression and EMT in xenograft tumor models. CONCLUSION CircSWT1 promoted the invasion, migration, and EMT of NSCLC. CircSWT1 could serve as a potential biomarker and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiang Long
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Ding‐Guo Wang
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhi‐Bo Wu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhong‐Min Liao
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Jian‐Jun Xu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| |
Collapse
|
42
|
Li J, Yang H, Shi H, Zhang J, Chen W. Expression Profiles of Differentially Expressed Circular RNAs and circRNA-miRNA-mRNA Regulatory Networks in SH-SY5Y Cells Infected with Coxsackievirus B5. Int J Genomics 2022; 2022:9298149. [PMID: 36267594 PMCID: PMC9577011 DOI: 10.1155/2022/9298149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B5 (CVB5) is the causative agent of hand, foot, and mouth disease (HFMD) that can cause neurological complications and fatalities. Circular RNA (circRNA) has been shown to play an important role in regulating pathogenic processes. However, the functions of circRNA in response to CVB5 infection remain unclear. In our research, RNA-seq was employed to analyze the expression profiles of circRNAs in SH-SY5Y cells with or without CVB5 infection. Out of 5,665 circRNAs identified to be expressed in SH-SY5Y cells, 163 circRNAs were found to be differentially expressed significantly. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially expressed circRNAs were mainly involved in ubiquitin-mediated proteolysis and signaling pathways during CVB5 infection. Additionally, RT-qPCR was used to validate the RNA-seq data, and a circRNA-miRNA-mRNA interaction network was constructed based on two circRNAs, such as hsa_circ_0008378 and novel_circ_0014617, which were associated with the regulation of innate immune response in host cells. Additionally, we confirmed the two circRANs up-regulated the key factors in the IFN-I signaling pathway, hampering viral replication. Our data provide a new perspective that facilitates further understanding of the virus-host mechanism.
Collapse
Affiliation(s)
- Jing Li
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Heng Yang
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan Province, China
| | - Huaran Shi
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Wei Chen
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
43
|
Bang D, Gu J, Park J, Jeong D, Koo B, Yi J, Shin J, Jung I, Kim S, Lee S. A Survey on Computational Methods for Investigation on ncRNA-Disease Association through the Mode of Action Perspective. Int J Mol Sci 2022; 23:ijms231911498. [PMID: 36232792 PMCID: PMC9570358 DOI: 10.3390/ijms231911498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular and sequencing technologies have been successfully used in decoding biological mechanisms of various diseases. As revealed by many novel discoveries, the role of non-coding RNAs (ncRNAs) in understanding disease mechanisms is becoming increasingly important. Since ncRNAs primarily act as regulators of transcription, associating ncRNAs with diseases involves multiple inference steps. Leveraging the fast-accumulating high-throughput screening results, a number of computational models predicting ncRNA-disease associations have been developed. These tools suggest novel disease-related biomarkers or therapeutic targetable ncRNAs, contributing to the realization of precision medicine. In this survey, we first introduce the biological roles of different ncRNAs and summarize the databases containing ncRNA-disease associations. Then, we suggest a new trend in recent computational prediction of ncRNA-disease association, which is the mode of action (MoA) network perspective. This perspective includes integrating ncRNAs with mRNA, pathway and phenotype information. In the next section, we describe computational methodologies widely used in this research domain. Existing computational studies are then summarized in terms of their coverage of the MoA network. Lastly, we discuss the potential applications and future roles of the MoA network in terms of integrating biological mechanisms for ncRNA-disease associations.
Collapse
Affiliation(s)
- Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Jeonghyeon Gu
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
| | - Joonhyeong Park
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
| | - Jihye Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea
- MOGAM Institute for Biomedical Research, Yongin-si 16924, Korea
| | - Sunho Lee
- AIGENDRUG Co., Ltd., Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
44
|
Li G, Wang Z, Chen D, Yin J, Mo Z, Sun B, Yang T, Zhang X, Zhai Z, Li Y, Chen P, Dai Y, Wang Z, Ma J. Comprehensive analysis of a TPX2-related TRHDE-AS1/PKIA ceRNA network involving prognostic signatures in Hepatitis B virus-infected hepatocellular carcinoma. Front Cell Infect Microbiol 2022; 12:1025900. [PMID: 36204642 PMCID: PMC9530265 DOI: 10.3389/fcimb.2022.1025900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a main carcinogenic factor of hepatocellular carcinoma (HCC). TPX2 microtubule nucleation factor is recently recommended as a novel prognostic biomarker in HBV-infected HCC tissues. This study aimed to explore a TPX2-related ceRNA regulatory network in HBV-infected HCC and the potential impact on HCC prognosis. We comprehensively identified 541 differential expressed lncRNAs (DElncRNAs), 37 DEmiRNAs and 439 DEmRNAs from HBV-related TCGA-HCC cohorts in TPX2low and TPX2high groups. Based on their RNA-RNA interaction and expression analysis, four DElncRNAs (TRHDE-AS1, DLX6-AS1, SNHG14, HOXA11-AS), four DEmiRNAs (miR-23b, miR-320a, miR-589, miR-126) and five DEmRNAs (PKIA, PCDHA2, SHCBP1, PRSS16, KIF18A) in HCC tumor vs normal groups were subjected to the hub regulatory networks analysis and further prognostic value analysis. Importantly, the TRHDE-AS1/miR-23b/PKIA ceRNA network was associated with HCC prognosis. Furthermore, cellular location analysis and base-base interaction analysis indicated that the cytoplasmic lncRNA TRHDE-AS1 was regarded as a ceRNA to sponging miR-23b and then regulating PKIA. Interestingly, correlation analysis suggested the expression correlation between TRHDE-AS1 and PKIA in HCC. Finally, we further performed the methylation and immune infiltration analysis to explore the functional process of PKIA in HCC. We proposed a ceRNA regulatory network may help elucidate the mechanism by which TPX2 contributes to the prognosis of HBV-related HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jun Ma
- *Correspondence: Jun Ma, ;
| |
Collapse
|
45
|
Liu L, Zhang Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Yao L, Zhang Z, Xiao Z, Du F. Therapeutic prospects of ceRNAs in COVID-19. Front Cell Infect Microbiol 2022; 12:998748. [PMID: 36204652 PMCID: PMC9530275 DOI: 10.3389/fcimb.2022.998748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
Since the end of 2019, COVID-19 caused by SARS-CoV-2 has spread worldwide, and the understanding of the new coronavirus is in a preliminary stage. Currently, immunotherapy, cell therapy, antiviral therapy, and Chinese herbal medicine have been applied in the clinical treatment of the new coronavirus; however, more efficient and safe drugs to control the progress of the new coronavirus are needed. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) may provide new therapeutic targets for novel coronavirus treatments. The first aim of this paper is to review research progress on COVID-19 in the respiratory, immune, digestive, circulatory, urinary, reproductive, and nervous systems. The second aim is to review the body systems and potential therapeutic targets of lncRNAs, miRNAs, and circRNAs in patients with COVID-19. The current research on competing endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA) in SARS-CoV-2 is summarized. Finally, we predict the possible therapeutic targets of four lncRNAs, MALAT1, NEAT1, TUG1, and GAS5, in COVID-19. Importantly, the role of PTEN gene in the ceRNA network predicted by lncRNA MALAT1 and lncRNA TUG1 may help in the discovery and clinical treatment of effective drugs for COVID-19.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| |
Collapse
|
46
|
Rahmani-Kukia N, Abbasi A. New insights on circular RNAs and their potential applications as biomarkers, therapeutic agents, and preventive vaccines in viral infections: with a glance at SARS-CoV-2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:705-717. [PMID: 35992045 PMCID: PMC9375856 DOI: 10.1016/j.omtn.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The occurrence of viral infections and approaches to handling them are very challenging and require prompt diagnosis and timely treatment. Recently, genomic medicine approaches have come up with the discovery of the competing endogenous RNA (ceRNA) network, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on the basis of gene silencing. CircRNAs, as a group of non-encoded RNAs, make a loop-like structure by back-splicing through 3' and 5' ends. They are stable, abundant, specific, and highly conserved and can be quickly generated at large scales in vitro. CircRNAs have the potential to contribute in several cellular processes in a way that some serve as microRNA sponges, cellular transporters, protein-binding RNAs, transcriptional regulators, and immune system modulators. CircRNAs can even play an important role in modulating antiviral immune responses. In the present review, circRNAs' biogenesis, function, and biomarker and therapeutic potential as well as their prospective applications as vaccines against viral infections such as SARS-CoV-2 are explained. By considering their unique properties, their potential to be used as novel vaccines, biomarkers, and a therapeutic approach appears possible.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
47
|
Qin Y, Lin L, Yang S, Dai Z, Zhang C, Huang J, Deng F, Yue X, Ren L, Fei Y, Zhao W, Wang Y, Zhong Z. Circular RNA circ_0076631 promotes coxsackievirus B3 infection through modulating viral translation by sponging miR-214-3p. Front Microbiol 2022; 13:975223. [PMID: 36147837 PMCID: PMC9485868 DOI: 10.3389/fmicb.2022.975223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Coxsackievirus B (CVB), a member of Enterovirus genus of Picornaviridae, is the leading pathogen of viral myocarditis and dilated cardiomyopathy. The pathogenesis of CVB-induced myocarditis has not been completely elucidated, and no specific antiviral measurement is available presently. Circular RNAs (circRNAs) have been reported to be able to modulate viral replication and infection through bridging over non-coding RNAs (ncRNAs) and coding messenger RNAs (mRNAs). To date, the role of circRNAs in CVB infection is largely unknown. In this study, we found that hsa_circ_0076631 (circ_0076631) significantly promoted CVB type 3 (CVB3) replication. Further study showed that the underneath mechanism was circ_0076631 indirectly interacting with CVB3 through sponging miR-214-3p, which targeted the 3D-coding region of CVB3 genome to suppress viral translation. Knocking down circ-0076631 caused a suppression of CVB3 infection; thus, circ-0076631 may be a potential target for anti-CVB therapy.
Collapse
Affiliation(s)
- Ying Qin
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zongmao Dai
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Congcong Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Fengzhen Deng
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xinxin Yue
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Long Ren
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
- *Correspondence: Wenran Zhao,
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Yan Wang,
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
- Zhaohua Zhong,
| |
Collapse
|
48
|
Gao Y, Wang S, Ma Y, Lei Z, Ma Y. Circular RNA regulation of fat deposition and muscle development in cattle. Vet Med Sci 2022; 8:2104-2113. [PMID: 35689831 PMCID: PMC9514475 DOI: 10.1002/vms3.857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are important transcriptional regulatory RNA molecule that can regulate the transcription of downstream genes by competitive binding of miRNAs or coding proteins or by blocking mRNAs translation. Numerous studies have shown that circRNAs are extensively involved in cell proliferation, differentiation and apoptosis, gene transcription and signal transduction. Fat deposition and muscle development have important effects on beef traits. CircRNAs are involved in regulating bovine fat and muscle cells and are differentially expressed in the tissues composed of these cells, suggesting that circRNAs play an important role in regulating bovine fat formation and muscle development. This review describes differential expression of circRNAs in bovine fat and muscle tissues, research progress in understanding how circRNAs regulate the proliferation and differentiation of bovine fat and muscle cells through competing endogenous RNAs networks, and provide a reference for the subsequent research on the molecular mechanism of circRNAs in regulating fat deposition and muscle development in cattle.
Collapse
Affiliation(s)
- Yuhong Gao
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Zhaoxiong Lei
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| |
Collapse
|
49
|
Hsa_circ_0000479/Hsa-miR-149-5p/RIG-I, IL-6 Axis: A Potential Novel Pathway to Regulate Immune Response against COVID-19. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:2762582. [PMID: 36081604 PMCID: PMC9448594 DOI: 10.1155/2022/2762582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022]
Abstract
Background. COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic and mortality of people around the world. Some circular RNAs (circRNAs), one of the new types of noncoding RNAs (ncRNAs), act as competing endogenous RNAs (ceRNAs) and compete with mRNAs for shared miRNAs, to regulate gene expression. In the present study, we aimed to evaluate the expression and roles of hsa_circ_0000479/hsa-miR-149-5p/RIG-I, IL-6 in COVID-19 infection. Materials and Methods. After extraction of total RNA from peripheral blood mononuclear cells (PBMC) of 50 patients with symptomatic COVID-19, 50 patients with nonsymptomatic COVID-19, and 50 normal controls, cDNA synthesis was performed. Online in silico tools were applied to evaluate the interaction between the genes in the hsa_circ_0000479/hsa-miR-149-5p/RIG-I, IL-6 axis, and its role in COVID-19-related pathways. Quantification of the expression of these genes and confirmation of their interaction was done using the quantitative real-time PCR (qRT-PCR) technique. Results. The expression levels of hsa_circ_0000479, RIG-I, and IL-6 were increased in COVID-19 patients compared to healthy controls, while hsa-miR-149-5p expression was decreased. Moreover, there was a significant negative correlation between hsa-miR-149-5p and hsa_circ_0000479, RIG-I, IL-6 expressions, and also a positive expression correlation between hsa_circ_0000479 and IL-6, RIG-I. Then, bioinformatics tools revealed the role of hsa_circ_0000479/hsa-miR-149-5p/RIG-I, IL-6 axis in PI3K-AKT and STAT3 signaling pathways. Conclusion. Upregulation of hsa_circ_0000479, RIG-I, and IL-6, and downregulation of hsa-miR-149-5p, along with correlation studies, indicate that hsa_circ_0000479/hsa-miR-149-5p/RIG-I, IL-6 axis could play a role in regulating the immune response against SARS-CoV-2. However, more studies are needed in this area.
Collapse
|
50
|
Expression Profile Analysis of Circular RNAs in Leishmaniasis. Trop Med Infect Dis 2022; 7:tropicalmed7080176. [PMID: 36006268 PMCID: PMC9415058 DOI: 10.3390/tropicalmed7080176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that seriously influences global public health. Among all the parasitic diseases, leishmaniasis is the third most common cause of morbidity after malaria and schistosomiasis. Circular RNAs (circRNAs) are a new type of noncoding RNAs that are involved in the regulation of biological and developmental processes. However, there is no published research on the function of circRNAs in leishmaniasis. This is the first study to explore the expression profiles of circRNAs in leishmaniasis. GO and KEGG analyses were performed to determine the potential function of the host genes of differentially expressed circRNAs. CircRNA–miRNA–mRNA (ceRNA) regulatory network analysis and protein–protein interaction (PPI) networks were analyzed by R software and the STRING database, respectively. A total of 4664 significant differentially expressed circRNAs were identified and compared to those in control groups; a total of 1931 were up-regulated and 2733 were down-regulated. The host genes of differentially expressed circRNAs were enriched in ubiquitin-mediated proteolysis, endocytosis, the MAPK signaling pathway, renal cell carcinoma, autophagy and the ErbB signaling pathway. Then, five hub genes (BRCA1, CREBBP, EP300, PIK3R1, and CRK) were identified. This study provides new evidence of the change of differentially expressed circRNAs and its potential function in leishmaniasis. These results may provide novel insights and evidence for the diagnosis and treatment of leishmaniasis.
Collapse
|