1
|
Huang Z, Li Y, Yu K, Ma L, Pang B, Qin Q, Li J, Wang D, Gao H, Kan B. Genome-wide expanding of genetic evolution and potential pathogenicity in Vibrio alginolyticus. Emerg Microbes Infect 2024; 13:2350164. [PMID: 38687697 PMCID: PMC11132748 DOI: 10.1080/22221751.2024.2350164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Vibrio alginolyticus, an emergent species of Vibrio genus, exists in aquatic and marine environments. It has undergone genetic diversification, but its detailed genomic diversity is still unclear. Here, we performed a multi-dimensional comparative genomic analysis to explore the population phylogeny, virulence-related genes and potential drug resistance genes of 184 V. alginolyticus isolates. Although genetic diversity is complex, we analysed the population structure using three sub-datasets, including the subdivision for three lineages into sublineages and the distribution of strains in the marine ecological niche. Accessory genes, most of which reclassified V. alginolyticus genomes as different but with relatively close affinities, were nonuniformly distributed among these isolates. We demonstrated that the spread of some post-evolutionary isolates (mainly L3 strains isolated from Chinese territorial seas) was likely to be closely related to human activities, whereas other more ancestral strains (strains in the L1 and L2) tended to be locally endemic and formed clonal complex groups. In terms of pathogenicity, the potential virulence factors were mainly associated with toxin, adherence, motility, chemotaxis, and the type III secretion system (T3SS). We also found five types of antibacterial drug resistance genes. The prevalence of β-lactam resistance genes was 100%, which indicated that there may be a potential risk of natural resistance to β-lactam drugs. Our study reveals insights into genomic characteristics, evolution and potential virulence-associated gene profiles of V. alginolyticus.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Hangzhou Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Yanjun Li
- The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Keyi Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lizhi Ma
- The Third Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, People’s Republic of China
| | - Bo Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qin Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jie Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Duochun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - He Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Kim YB, Park SY, Jeon HJ, Kim B, Kwon MG, Kim SM, Han JE, Kim JH. Genomic and Pathological Characterization of Acute Hepatopancreatic Necrosis Disease (AHPND)-Associated Natural Mutant Vibrio parahaemolyticus Isolated from Penaeus vannamei Cultured in Korea. Animals (Basel) 2024; 14:2788. [PMID: 39409739 PMCID: PMC11475263 DOI: 10.3390/ani14192788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is one of the most important diseases in the global shrimp industry. The emergence of mutant AHPND-associated V. parahaemolyticus (VpAHPND) strains has raised concerns regarding potential misdiagnosis and unforeseen pathogenicity. In this study, we report the first emergence of a type II (pirA-, pirB+) natural mutant, VpAHPND (strain 20-082A3), isolated from cultured Penaeus vannamei in Korea. Phenotypic and genetic analyses revealed a close relationship between the mutant strain 20-082A3 and the virulent Korean VpAHPND strain 19-021-D1, which caused an outbreak in 2019. Detailed sequence analysis of AHPND-associated plasmids showed that plasmid pVp_20-082A3B in strain 20-082A3 was almost identical (>99.9%) to that of strain 19-021-D1. Moreover, strains 20-082A3 and 19-021-D1 exhibited the same multilocus sequence type (ST 413) and serotype (O1:Un-typeable K-serogroup), suggesting that the mutant strain is closely related to and may have originated from the virulent strain 19-021-D1. Similar to previous reports on the natural mutant VpAHPND, strain 20-082A3 did not induce AHPND-related symptoms or cause mortality in the shrimp bioassay. The emergence of a mutant strain which is almost identical to the virulent VpAHPND highlights the need for surveillance of the pathogen prevalent in Korea. Further investigations to elucidate the potential relationship between ST 413 and recent Korean VpAHPND isolates are needed.
Collapse
Affiliation(s)
- Ye Bin Kim
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Seon Young Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hye Jin Jeon
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.J.); (B.K.)
| | - Bumkeun Kim
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.J.); (B.K.)
| | - Mun-Gyeong Kwon
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, Busan 46083, Republic of Korea; (M.-G.K.); (S.-M.K.)
| | - Su-Mi Kim
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, Busan 46083, Republic of Korea; (M.-G.K.); (S.-M.K.)
| | - Jee Eun Han
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.J.); (B.K.)
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
3
|
Sorée M, Lozach S, Kéomurdjian N, Richard D, Hughes A, Delbarre-Ladrat C, Verrez-Bagnis V, Rincé A, Passerini D, Ritchie JM, Heath DH. Virulence phenotypes differ between toxigenic Vibrio parahaemolyticus isolated from western coasts of Europe. Microbiol Res 2024; 285:127744. [PMID: 38735242 DOI: 10.1016/j.micres.2024.127744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with seafood consumption worldwide. Not all members of the species are thought to be pathogenic, thus identification of virulent organisms is essential to protect public health and the seafood industry. Correlations of human disease and known genetic markers (e.g. thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH)) appear complex. Some isolates recovered from patients lack these factors, while their presence has become increasingly noted in isolates recovered from the environment. Here, we used whole-genome sequencing in combination with mammalian and insect models of infection to assess the pathogenic potential of V. parahaemolyticus isolated from European Atlantic shellfish production areas. We found environmental V. parahaemolyticus isolates harboured multiple virulence-associated genes, including TDH and/or TRH. However, carriage of these factors did not necessarily reflect virulence in the mammalian intestine, as an isolate containing TDH and the genes coding for a type 3 secretion system (T3SS) 2α virulence determinant, appeared avirulent. Moreover, environmental V. parahaemolyticus lacking TDH or TRH could be assigned to groups causing low and high levels of mortality in insect larvae, with experiments using defined bacterial mutants showing that a functional T3SS1 contributed to larval death. When taken together, our findings highlight the genetic diversity of V. parahaemolyticus isolates found in the environment, their potential to cause disease and the need for a more systematic evaluation of virulence in diverse V. parahaemolyticus to allow better genetic markers.
Collapse
Affiliation(s)
| | - Solen Lozach
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, Plouzané F-29280, France
| | | | | | - Alexandra Hughes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | - Alain Rincé
- Biotargen, Université de Caen Normandie, Saint-Contest F-14380, France
| | | | - Jennifer M Ritchie
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| | | |
Collapse
|
4
|
Bosi E, Taviani E, Avesani A, Doni L, Auguste M, Oliveri C, Leonessi M, Martinez-Urtaza J, Vetriani C, Vezzulli L. Pan-Genome Provides Insights into Vibrio Evolution and Adaptation to Deep-Sea Hydrothermal Vents. Genome Biol Evol 2024; 16:evae131. [PMID: 39007295 PMCID: PMC11247349 DOI: 10.1093/gbe/evae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Elisa Taviani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Alessia Avesani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Martina Leonessi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Jaime Martinez-Urtaza
- Facultat de Biociéncies, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Spain
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
5
|
Restrepo-Benavides M, Lozano-Arce D, Gonzalez-Garcia LN, Báez-Aguirre F, Ariza-Aranguren G, Faccini D, Zambrano MM, Jiménez P, Fernández-Bravo A, Restrepo S, Guevara-Suarez M. Unveiling potential virulence determinants in Vibrio isolates from Anadara tuberculosa through whole genome analyses. Microbiol Spectr 2024; 12:e0292823. [PMID: 38189292 PMCID: PMC10846245 DOI: 10.1128/spectrum.02928-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
The genus Vibrio includes pathogenic bacteria able to cause disease in humans and aquatic organisms, leading to disease outbreaks and significant economic losses in the fishery industry. Despite much work on Vibrio in several marine organisms, no specific studies have been conducted on Anadara tuberculosa. This is a commercially important bivalve species, known as "piangua hembra," along Colombia's Pacific coast. Therefore, this study aimed to identify and characterize the genomes of Vibrio isolates obtained from A. tuberculosa. Bacterial isolates were obtained from 14 A. tuberculosa specimens collected from two locations along the Colombian Pacific coast, of which 17 strains were identified as Vibrio: V. parahaemolyticus (n = 12), V. alginolyticus (n = 3), V. fluvialis (n = 1), and V. natriegens (n = 1). Whole genome sequence of these isolates was done using Oxford Nanopore Technologies (ONT). The analysis revealed the presence of genes conferring resistance to β-lactams, tetracyclines, chloramphenicol, and macrolides, indicating potential resistance to these antimicrobial agents. Genes associated with virulence were also found, suggesting the potential pathogenicity of these Vibrio isolates, as well as genes for Type III Secretion Systems (T3SS) and Type VI Secretion Systems (T6SS), which play crucial roles in delivering virulence factors and in interbacterial competition. This study represents the first genomic analysis of bacteria within A. tuberculosa, shedding light on Vibrio genetic factors and contributing to a comprehensive understanding of the pathogenic potential of these Vibrio isolates.IMPORTANCEThis study presents the first comprehensive report on the whole genome analysis of Vibrio isolates obtained from Anadara tuberculosa, a bivalve species of great significance for social and economic matters on the Pacific coast of Colombia. Research findings have significant implications for the field, as they provide crucial information on the genetic factors and possible pathogenicity of Vibrio isolates associated with A. tuberculosa. The identification of antimicrobial resistance genes and virulence factors within these isolates emphasizes the potential risks they pose to both human and animal health. Furthermore, the presence of genes associated with Type III and Type VI Secretion Systems suggests their critical role in virulence and interbacterial competition. Understanding the genetic factors that contribute to Vibrio bacterial virulence and survival strategies within their ecological niche is of utmost importance for the effective prevention and management of diseases in aquaculture practices.
Collapse
Affiliation(s)
- Mariana Restrepo-Benavides
- Applied Genomics Research Group, Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá, Colombia
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | - Daniela Lozano-Arce
- Applied Genomics Research Group, Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá, Colombia
| | - Laura Natalia Gonzalez-Garcia
- Applied Genomics Research Group, Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá, Colombia
- Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá, Colombia
- UMR DIADE, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Felipe Báez-Aguirre
- Applied Genomics Research Group, Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá, Colombia
| | - Gabriela Ariza-Aranguren
- Applied Genomics Research Group, Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá, Colombia
| | - Daniel Faccini
- Applied Genomics Research Group, Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá, Colombia
| | | | - Pedro Jiménez
- Laboratorio de Fitopatología, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Ana Fernández-Bravo
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | - Silvia Restrepo
- Departamento de Ingeniería Química y de Alimentos, Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia
| | - Marcela Guevara-Suarez
- Applied Genomics Research Group, Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
6
|
Zheng P, Lun J, Yu F, Huang T, Peng T, Li J, Hu Z. Deletion of ArmPT, a LamB-like protein, increases cell membrane permeability and antibiotic sensitivity in Vibrio alginolyticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115855. [PMID: 38157797 DOI: 10.1016/j.ecoenv.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Vibrio bacterial species are dominant pathogens in mariculture animals. However, the extensive use of antibiotics and other chemicals has increased drug resistance in Vibrio bacteria. Despite rigorous investigative studies, the mechanism of drug resistance in Vibrio remains a mystery. In this study, we found that a gene encoding LamB-like outer membrane protein, named ArmPT, was upregulated in Va under antibiotic stress by RT-qPCR. We speculated that ArmPT might play a role in Va's drug resistance. Subsequently, using ArmPT gene knockout and gene complementation experiments, we confirmed its role in resistance against a variety of antibiotics, particularly kanamycin (KA). Transcriptomic and proteomic analyses identified 188 and 83 differentially expressed genes in the mutant strain compared with the wild-type (WT) before and after KA stress, respectively. Bioinformatic analysis predicted that ArmPT might control cell membrane permeability by changing cadaverine biosynthesis, thereby influencing the cell entry of antibiotics in Va. The higher levels of intracellular reactive oxygen species and the infused content of KA showed that antibiotics are more likely to enter the Va mutant strain. These results uncover the drug resistance mechanism of Va that can also exist in other similar pathogenic bacteria.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jingsheng Lun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
7
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
8
|
Shih CY, Chen SY, Hsu CR, Chin CH, Chiu WC, Chang MH, Kang LK, Yang CH, Pai TW, Hu CH, Hsu PH, Tzou WS. Distinctive microbial community and genome structure in coastal seawater from a human-made port and nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. PLoS One 2023; 18:e0284022. [PMID: 37294811 PMCID: PMC10256201 DOI: 10.1371/journal.pone.0284022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/21/2023] [Indexed: 06/11/2023] Open
Abstract
Pollution in human-made fishing ports caused by petroleum from boats, dead fish, toxic chemicals, and effluent poses a challenge to the organisms in seawater. To decipher the impact of pollution on the microbiome, we collected surface water from a fishing port and a nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. By employing 16S rRNA gene amplicon sequencing and whole-genome shotgun sequencing, we discovered that Rhodobacteraceae, Vibrionaceae, and Oceanospirillaceae emerged as the dominant species in the fishing port, where we found many genes harboring the functions of antibiotic resistance (ansamycin, nitroimidazole, and aminocoumarin), metal tolerance (copper, chromium, iron and multimetal), virulence factors (chemotaxis, flagella, T3SS1), carbohydrate metabolism (biofilm formation and remodeling of bacterial cell walls), nitrogen metabolism (denitrification, N2 fixation, and ammonium assimilation), and ABC transporters (phosphate, lipopolysaccharide, and branched-chain amino acids). The dominant bacteria at the nearby offshore island (Alteromonadaceae, Cryomorphaceae, Flavobacteriaceae, Litoricolaceae, and Rhodobacteraceae) were partly similar to those in the South China Sea and the East China Sea. Furthermore, we inferred that the microbial community network of the cooccurrence of dominant bacteria on the offshore island was connected to dominant bacteria in the fishing port by mutual exclusion. By examining the assembled microbial genomes collected from the coastal seawater of the fishing port, we revealed four genomic islands containing large gene-containing sequences, including phage integrase, DNA invertase, restriction enzyme, DNA gyrase inhibitor, and antitoxin HigA-1. In this study, we provided clues for the possibility of genomic islands as the units of horizontal transfer and as the tools of microbes for facilitating adaptation in a human-made port environment.
Collapse
Affiliation(s)
- Chi-Yu Shih
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan
| | - Shiow-Yi Chen
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chun-Ru Hsu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Hsiang Chin
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Chih Chiu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | - Lee-Kuo Kang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Cing-Han Yang
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chin-Hwa Hu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Pang-Hung Hsu
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan
- Departent of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
9
|
Zha F, Pang R, Huang S, Zhang J, Wang J, Chen M, Xue L, Ye Q, Wu S, Yang M, Gu Q, Ding Y, Zhang H, Wu Q. Evaluation of the pathogenesis of non-typical strain with α-hemolysin, Vibrio parahaemolyticus 353, isolated from Chinese seafood through comparative genome and transcriptome analysis. MARINE POLLUTION BULLETIN 2023; 186:114276. [PMID: 36437125 DOI: 10.1016/j.marpolbul.2022.114276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Vibrio parahaemolyticus outbreaks frequently occur, causing gastrointestinal sickness owing to the consumption of aquatic foods by various virulence factors; however, the mechanism of pathogenesis is still unknown. In this study, a non-typical strain of V. parahaemolyticus, named VP353, was isolated from shrimp in China. Its comparative genome and transcriptome after infection with Caco-2 cells were examined to illustrate the mechanisms of its pathogenesis. VP353 was a tdh-trh- strain but uncommonly manifested robust cytotoxicity towards Caco-2 cells. Compared with the standard strain RIMD2210633, VP353 harbored alpha-hemolysins (hlyA, hlyB, hlyC, and hlyD) was first reported in V. parahaemolyticus and showed high diversity in the T3SS2 gene cluster. Moreover, the expression of flagella, T2SS, quorum sensing-related genes, hlyA, hlyC were up-regulated, and hlyB, hlyD were down-regulated. In summary, our results demonstrate that some novel virulence factors contribute to the pathogenesis of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Fei Zha
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Shixuan Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
10
|
Yu Y, Li H, Wang Y, Zhang Z, Liao M, Rong X, Li B, Wang C, Ge J, Zhang X. Antibiotic resistance, virulence and genetic characteristics of Vibrio alginolyticus isolates from aquatic environment in costal mariculture areas in China. MARINE POLLUTION BULLETIN 2022; 185:114219. [PMID: 36335689 DOI: 10.1016/j.marpolbul.2022.114219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Vibrio alginolyticus has been the second most common Vibrio species in the world and mainly grows in the ocean or estuary environment, which can induce epidemics outbreaks under marine organisms, and causing serious economic losses in aquaculture industry. In this study, the genetic populations and evolutionary relationship analysis of V. alginolyticus isolated from different geographical locations in China with typical interannual differences were exhibited originally genetic diversity. Then the virulence genes prevalence, antibiotic resistance phenotype, and antimicrobial resistance genes risk diversity of V. alginolyticus were analyzed by phenotypic and molecular typing methods. And they were complex correlations among antibiotic phenotypes, resistance and virulence genes under different genotype of V. alginolyticus. The results provide a theoretical foundation for further understanding the genetic and metabolic diversity among V. alginolyticus in China, and lay a theoretical foundation for the transmission risk assessment and regional diagnosis of Vibrio in aquatic animals.
Collapse
Affiliation(s)
- Yongxiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Hao Li
- Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, PR China.
| | - Yingeng Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Meijie Liao
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Xiaojun Rong
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Chunyuan Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Jianlong Ge
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Xiaosong Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| |
Collapse
|
11
|
Muhammad N, Nguyen TTH, Lee YJ, Ko J, Avila F, Kim SG. Vibrio ostreae sp. nov., a novel gut bacterium isolated from a Yellow Sea oyster. Int J Syst Evol Microbiol 2022; 72. [PMID: 36269578 DOI: 10.1099/ijsem.0.005586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic motile bacterium, designated strain OG9-811T, was isolated from the gut of an oyster collected in the Yellow Sea, Republic of Korea. The strain grew at 10-37 °C, pH 6.0-9.0 and with 0.5-10% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain OG9-811T affiliated with the genus Vibrio, with the highest sequence similarity of 98.2% to Vibrio coralliilyticus ATCC BAA-450T followed by Vibrio variabilis R-40492T (98.0 %), Vibrio hepatarius LMG 20362T (97.7 %) and Vibrio neptunius LMG 20536T (97.6 %); other relatives were Vibrio tritonius JCM 16456T (97.4 %), Vibrio fluvialis NBRC 103150T (97.0 %) and Vibrio furnissii CIP 102972T (97.0 %). The complete genome of strain OG9-811T comprised two chromosomes of a total 4 807 684 bp and the G+C content was 50.2 %. Results of analysis based on the whole genome sequence showed the distinctiveness of strain OG9-811T. The average nucleotide identity (ANI) values between strain OG9-811T and the closest strains V. coralliilyticus ATCC BAA-450T, V. variabilis R-40492T, V. hepatarius LMG 20362T, V. neptunius KCTC 12702T , V. tritonius JCM 16456T, V. fluvialis ATCC 33809T and V. furnissi CIP 102972T were 73.0, 72.6, 73.3, 73.0, 72.7, 78.5 and 77.8 %, respectively, while the digital DNA-DNA hybridization values between strain OG9-811T and the above closely related strains were 20.8, 21.2, 20.8, 21.7, 20.7, 23.2 and 22.4 %, respectively. The major fatty acids of strain OG9-811T were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and C16:0. The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strain OG9-811T contained Q-8 as a quinone. On the basis of polyphasic taxonomic characteristics, strain OG9-811T is considered to represent a novel species, for which the name Vibrio ostreae sp. nov. is proposed. The type strain is OG9-811T (=KCTC 72623T=GDMCC 1.2610T).
Collapse
Affiliation(s)
- Neak Muhammad
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong-Jae Lee
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
| | - Jaeho Ko
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
| | - Forbes Avila
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
Sun H, Zhu C, Fu X, Khattak S, Wang J, Liu Z, Kong Q, Mou H, Secundo F. Effects of intestinal microbiota on physiological metabolism and pathogenicity of Vibrio. Front Microbiol 2022; 13:947767. [PMID: 36081796 PMCID: PMC9445811 DOI: 10.3389/fmicb.2022.947767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio species are disseminated broadly in the marine environment. Some of them can cause severe gastroenteritis by contaminating seafood and drinking water, such as Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus. However, their pathogenic mechanism still needs to be revealed to prevent and reduce morbidity. This review comprehensively introduces and discusses the common pathogenic process of Vibrio including adhesion, cell colonization and proliferation, and resistance to host immunity. Vibrio usually produces pathogenic factors including hemolysin, type-III secretion system, and adhesion proteins. Quorum sensing, a cell molecular communication system between the bacterial cells, plays an important role in Vibrio intestinal invasion and colonization. The human immune system can limit the virulence of Vibrio or even kill the bacteria through different responses. The intestinal microbiota is a key component of the immune system, but information on its effects on physiological metabolism and pathogenicity of Vibrio is seldom available. In this review, the effects of intestinal microorganisms and their metabolites on the invasion and colonization of common pathogenic Vibrio and VBNC status cells are discussed, which is conducive to finding the next-generation prebiotics. The strategy of dietary intervention is discussed for food safety control. Finally, future perspectives are proposed to prevent Vibrio infection in aquaculture.
Collapse
Affiliation(s)
- Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi, Nanchang University, Nanchang, China
| | - Shakir Khattak
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhihao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- *Correspondence: Haijin Mou
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR, Milan, Italy
- Francesco Secundo
| |
Collapse
|
13
|
Zhang W, Chen L, Feng H, Wang J, Zeng F, Xiao X, Jian J, Wang N, Pang H. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish ( Danio rerio) model. Front Vet Sci 2022; 9:938822. [PMID: 37265802 PMCID: PMC10230115 DOI: 10.3389/fvets.2022.938822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 06/03/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and β-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liangchuan Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Haiyun Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
14
|
Li X, Zhang C, Wei F, Yu F, Zhao Z. Bactericidal activity of a holin-endolysin system derived from Vibrio alginolyticus phage HH109. Microb Pathog 2021; 159:105135. [PMID: 34390766 DOI: 10.1016/j.micpath.2021.105135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Vibrio alginolyticus is a common opportunistic pathogen that can cause vibriosis of marine aquatic animals. The application of phages or particularly associated protein products for the treatment of vibriosis has shown prominent advantages compared with the treatment with traditional antibiotics. In this study, the function of a holin-endolysin system from V. alginolyticus phage HH109 was characterized by examining the effect of their overexpression on Escherichia coli and V. alginolyticus. Our data revealed that the endolysin of the phage HH109 has stronger bactericidal activity than the holin, as evidenced by observing more cell death and severe structural damage of cells in the endolysin-expressing E. coli. Furthermore, the two proteins displayed the synergistic effect when the holA and lysin were co-expressed in E. coli, although no interaction between them was detected using the bacterial two-hybrid assay. Transmission electron microscopy observation revealed disruptions of cell envelopes accompanied by leakage of intracellular contents. Similarly, the bactericidal activity of the holin and endolysin against V. alginolyticus was also examined whatever the host is sensitive or resistant to phage HH109. Together, our study contributes to a better understanding of the mechanism of phage HH109 destroying the bacterial cell wall to lyse their host and may offer alternative applications potentially for vibriosis treatment.
Collapse
Affiliation(s)
- Xixi Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Ce Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fucheng Wei
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fei Yu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Shah T, Baloch Z, Shah Z, Cui X, Xia X. The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. Int J Mol Sci 2021; 22:ijms22126597. [PMID: 34202945 PMCID: PMC8235228 DOI: 10.3390/ijms22126597] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes exist in the human body, particularly the gastrointestinal tract, coevolved with the host in a mutually beneficial relationship. The main role of the intestinal microbiome is the fermentation of non-digestible substrates and increased growth of beneficial microbes that produce key antimicrobial metabolites such as short-chain fatty acids, etc., to inhibit the growth of pathogenic microbes besides other functions. Intestinal microbiota can prevent pathogen colonization through the mechanism of colonization resistance. A wide range of resistomes are present in both beneficial and pathogenic microbes. Giving antibiotic exposure to the intestinal microbiome (both beneficial and hostile) can trigger a resistome response, affecting colonization resistance. The following review provides a mechanistic overview of the intestinal microbiome and the impacts of antibiotic therapy on pathogen colonization and diseases. Further, we also discuss the epidemiology of immunocompromised patients who are at high risk for nosocomial infections, colonization and decolonization of multi-drug resistant organisms in the intestine, and the direct and indirect mechanisms that govern colonization resistance to the pathogens.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (Z.B.); (X.C.); (X.X.)
| | - Zahir Shah
- Faculty of Animal Husbandry and Veterinary Sciences, College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar 25120, Pakistan;
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Correspondence: (Z.B.); (X.C.); (X.X.)
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (Z.B.); (X.C.); (X.X.)
| |
Collapse
|
16
|
Zhang Y, Deng Y, Feng J, Guo Z, Chen H, Wang B, Hu J, Lin Z, Su Y. Functional characterization of VscCD, an important component of the type Ⅲ secretion system of Vibrio harveyi. Microb Pathog 2021; 157:104965. [PMID: 34015493 DOI: 10.1016/j.micpath.2021.104965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Vibrio harveyi is a Gram-negative bacterium that occurs widely in the ocean and a kind of pathogenic bacteria associated with vibriosis in grouper. We investigated whether the VscCD protein of the type Ⅲ secretion system (T3SS) was important for pathogenicity of V. harveyi. Mutations to the vscC and vscD genes (ΔvscCD) and complementation of the ΔvscCD mutant (C-ΔvscCD) were created. Moreover, the biological characteristics of the wild-type (WT) and mutant strains of V. harveyi 345 were compared. The results showed that deletion of the vscCD genes had no effect on bacterial growth, swimming/swarming ability, secretion of extracellular protease, or biofilm formation. However, as compared with the V. harveyi 345: pMMB207 (WT+) and complementary (C-ΔvscCD) strains, the ΔvscCD: pMMB207 (ΔvscCD+) mutant displayed decreased resistance to acid stress, H2O2, and antibiotics. In addition, infection of the pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) showed that as compared with the WT+ and C-ΔvscCD strains, the ΔvscCD+ strain significantly reduced cumulative mortality of the host. The colonization ability of the ΔvscCD+ mutant in the spleen and liver tissues of the pearl gentian grouper was significantly lower than that of the WT+ and C-ΔvscCD strains. In the early stage of infection with the ΔvscCD+ strain, the expression levels of IL-1β, IL-16, TLR3, TNF-α, MHC-Iα, and CD8α were up-regulated to varying degrees. As compared with the WT+ and C-ΔvscCD strains, luxR expression was significantly up-regulated in the ΔvscCD+ strain, while the expression of vcrH and vp1668 was significantly down-regulated. As an important component of the T3SS, VscCD seemed to play a significant role in the pathogenesis of V. harveyi.
Collapse
Affiliation(s)
- Yaqiu Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haoxiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Baotun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianmei Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
17
|
Mao F, Liu K, Wong NK, Zhang X, Yi W, Xiang Z, Xiao S, Yu Z, Zhang Y. Virulence of Vibrio alginolyticus Accentuates Apoptosis and Immune Rigor in the Oyster Crassostrea hongkongensis. Front Immunol 2021; 12:746017. [PMID: 34621277 PMCID: PMC8490866 DOI: 10.3389/fimmu.2021.746017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Vibrio species are ubiquitously distributed in marine environments, with important implications for emerging infectious diseases. However, relatively little is known about defensive strategies deployed by hosts against Vibrio pathogens of distinct virulence traits. Being an ecologically relevant host, the oyster Crassostrea hongkongensis can serve as an excellent model for elucidating mechanisms underlying host-Vibrio interactions. We generated a Vibrio alginolyticus mutant strain (V. alginolyticus△vscC ) with attenuated virulence by knocking out the vscC encoding gene, a core component of type III secretion system (T3SS), which led to starkly reduced apoptotic rates in hemocyte hosts compared to the V. alginolyticusWT control. In comparative proteomics, it was revealed that distinct immune responses arose upon encounter with V. alginolyticus strains of different virulence. Quite strikingly, the peroxisomal and apoptotic pathways are activated by V. alginolyticusWT infection, whereas phagocytosis and cell adhesion were enhanced in V. alginolyticus△vscC infection. Results for functional studies further show that V. alginolyticusWT strain stimulated respiratory bursts to produce excess superoxide (O2•-) and hydrogen peroxide (H2O2) in oysters, which induced apoptosis regulated by p53 target protein (p53tp). Simultaneously, a drop in sGC content balanced off cGMP accumulation in hemocytes and repressed the occurrence of apoptosis to a certain extent during V. alginolyticus△vscC infection. We have thus provided the first direct evidence for a mechanistic link between virulence of Vibrio spp. and its immunomodulation effects on apoptosis in the oyster. Collectively, we conclude that adaptive responses in host defenses are partially determined by pathogen virulence, in order to safeguard efficiency and timeliness in bacterial clearance.
Collapse
Affiliation(s)
- Fan Mao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Kunna Liu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Kei Wong
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xiangyu Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Yi
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Xiang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shu Xiao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ziniu Yu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Yang Zhang, ; Ziniu Yu,
| | - Yang Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Yang Zhang, ; Ziniu Yu,
| |
Collapse
|