1
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2024:e0008123. [PMID: 39714182 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L E Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Lin P, Chen Z, Sun G, Guo S. Differentially Expressed Genes and Alternative Splicing Analysis Revealed the Difference in Virulence to American Eels (Anguilla rostrata) Infected by Edwardsiella anguillarum and Aeromonas hydrophila. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:4. [PMID: 39565429 DOI: 10.1007/s10126-024-10378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Edwardsiella anguillarum and Aeromonas hydrophila are two common bacterial pathogens affecting cultivated eels, and the differences in their virulence remain unclear. In this study, after two groups of American eels (Anguilla rostrata) were administered the LD50 dose of E. anguillarum and A. hydrophila, respectively, the histopathology of the liver, trunk kidney, and spleen, as well as transcriptomic RNA sequencing (RNA-seq) analysis of the spleen, was examined at three time points: pre-infection (Con group) and post-infection at 36 h (Ea_36 group, Ah_36 group) and 60 h (Ea_60 group, Ah_60 group). The results showed that the differences in pathological changes were characterized by severe hepatocyte edema at 36 h post-infection (hpi) and hepatocyte atrophy at 60 hpi in the livers of eels infected by A. hydrophila, in contrast to the severe atrophy of glomeruli in the trunk kidneys and numerous bacterial nodules in the spleens of eels infected by E. anguillarum. The RNA-seq results revealed 906 and 77 typical differentially expressed genes (DEGs) in eels infected with E. anguillarum and A. hydrophila, respectively, compared to the control eels. The DEGs between the infected and control groups were predominantly annotated in GO terms related to binding, catalytic activity, membrane part, cell part, and cellular process, as well as in KEGG pathways associated with human diseases and organismal systems. The GO enrichment analysis showed 83 and 146 differential GO terms, along with 32 and 78 differential KEGG pathways in two comparisons of Ea_36 vs Con versus Ah_36 vs Con and Ea_60 vs Con versus Ah_60 vs Con, respectively. Furthermore, the analysis of differential alternative splicing genes (DASs) showed 1244 and 1341 DASs out of 12,907 and 12,833 AS genes, respectively, in the comparisons of Ea_36 vs Ah_36 and Ea_60 vs Ah_60. These DASs were enriched in two common KEGG pathways: "NOD-like receptor signaling pathway" and "necroptosis" which shared 11 hub DASs. Finally, analysis of protein-protein interactions revealed that 91 of 412 cross DASs between Ea_36 vs Ah_36 and Ea_60 vs Ah_60 potentially play an essential role in the difference in virulence of E. anguillarum and A. hydrophila in American eels, with 12 encoded proteins being particularly notable. Together, this study is the first to report a comparative pathogenicity and RNA-seq analysis of E. anguillarum and A. hydrophila in American eels, shedding new light on our understanding of the differences in virulence as revealed by pathological changes, DEGs, and DASs, contributing to more effective control strategies to prevent outbreaks of bacterial infections.
Collapse
Affiliation(s)
- Peng Lin
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Zihao Chen
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Guanghua Sun
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, China.
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China.
| |
Collapse
|
3
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. TnpB homologues exapted from transposons are RNA-guided transcription factors. Nature 2024; 631:439-448. [PMID: 38926585 DOI: 10.1038/s41586-024-07598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Transposon-encoded tnpB and iscB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. These widespread gene families were repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas12 (refs. 5,6). We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas adaptive immunity. Here, using phylogenetics, structural predictions, comparative genomics and functional assays, we uncover multiple independent genesis events of programmable transcription factors, which we name TnpB-like nuclease-dead repressors (TldRs). These proteins use naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPR interference technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of transposon-encoded genes, and reveals the evolutionary trajectory of diverse RNA-guided transcription factors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Combret V, Rincé I, Budin-Verneuil A, Muller C, Deutscher J, Hartke A, Sauvageot N. Utilization of glycoprotein-derived N-acetylglucosamine-L-asparagine during Enterococcus faecalis infection depends on catabolic and transport enzymes of the glycosylasparaginase locus. Res Microbiol 2024; 175:104169. [PMID: 37977353 DOI: 10.1016/j.resmic.2023.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Enterococcus faecalis is a Gram-positive clinical pathogen causing severe infections. Its survival during infection depends on its ability to utilize host-derived metabolites, such as protein-deglycosylation products. We have identified in E. faecalis OG1RF a locus (ega) involved in the catabolism of the glycoamino acid N-acetylglucosamine-L-asparagine. This locus is separated into two transcription units, genes egaRP and egaGBCD1D2, respectively. RT-qPCR experiments revealed that the expression of the ega locus is regulated by the transcriptional repressor EgaR. Electromobility shift assays evidenced that N-acetylglucosamine-L-asparagine interacts directly with the EgaR protein, which leads to the transcription of the ega genes. Growth studies with egaG, egaB and egaC mutants confirmed that the encoded proteins are necessary for N-acetylglucosamine-L-asparagine catabolism. This glycoamino acid is transported and phosphorylated by a specific phosphotransferase system EIIABC components (OG1RF_10751, EgaB, EgaC) and subsequently hydrolyzed by the glycosylasparaginase EgaG, which generates aspartate and 6-P-N-acetyl-β-d-glucosaminylamine. The latter can be used as a fermentable carbon source by E. faecalis. Moreover, Galleria mellonella larvae had a significantly higher survival rate when infected with ega mutants compared to the wild-type strain, suggesting that the loss of N-acetylglucosamine-L-asparagine utilization affects enterococcal virulence.
Collapse
Affiliation(s)
- Victor Combret
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | - Isabelle Rincé
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | | | - Cécile Muller
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | - Josef Deutscher
- Université Paris Saclay, INRAE, Micalis Institute, 78350 Jouy en Josas, France; CNRS, Institut de Biologie Physico-Chimique UMR8261, Expression Génétique Microbienne, 75005 Paris, France
| | - Axel Hartke
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | | |
Collapse
|
5
|
Djorić D, Atkinson SN, Kristich CJ. Reciprocal regulation of enterococcal cephalosporin resistance by products of the autoregulated yvcJ-glmR-yvcL operon enhances fitness during cephalosporin exposure. PLoS Genet 2024; 20:e1011215. [PMID: 38512984 PMCID: PMC10986989 DOI: 10.1371/journal.pgen.1011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
6
|
Moreno-Blanco A, Pluta R, Espinosa M, Ruiz-Cruz S, Bravo A. Promoter DNA recognition by the Enterococcus faecalis global regulator MafR. Front Mol Biosci 2023; 10:1294974. [PMID: 38192335 PMCID: PMC10773906 DOI: 10.3389/fmolb.2023.1294974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
When Enterococcus faecalis is exposed to changing environmental conditions, the expression of many genes is regulated at the transcriptional level. We reported previously that the enterococcal MafR protein causes genome-wide changes in the transcriptome. Here we show that MafR activates directly the transcription of the OG1RF_10478 gene, which encodes a hypothetical protein of 111 amino acid residues. We have identified the P10478 promoter and demonstrated that MafR enhances the efficiency of this promoter by binding to a DNA site that contains the -35 element. Moreover, our analysis of the OG1RF_10478 protein AlphaFold model indicates high similarity to 1) structures of EIIB components of the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system, and 2) structures of receiver domains that are found in response regulators of two-component signal transduction systems. However, unlike typical EIIB components, OG1RF_10478 lacks a Cys or His residue at the conserved phosphorylation site, and, unlike typical receiver domains, OG1RF_10478 lacks a conserved Asp residue at the position usually required for phosphorylation. Different from EIIB components and receiver domains, OG1RF_10478 contains an insertion between residues 10 and 30 that, according to ColabFold prediction, may serve as a dimerization interface. We propose that OG1RF_10478 could participate in regulatory functions by protein-protein interactions.
Collapse
Affiliation(s)
- Ana Moreno-Blanco
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Radoslaw Pluta
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sofía Ruiz-Cruz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alicia Bravo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. Emergence of RNA-guided transcription factors via domestication of transposon-encoded TnpB nucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569447. [PMID: 38076855 PMCID: PMC10705468 DOI: 10.1101/2023.11.30.569447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Transposon-encoded tnpB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. This widespread gene family was repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas125,6. We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas. Here, using phylogenetics, structural predictions, comparative genomics, and functional assays, we uncover multiple instances of programmable transcription factors that we name TnpB-like nuclease-dead repressors (TldR). These proteins employ naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPRi technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of genes encoded by transposable elements, and reveals that RNA-guided transcription factors emerged long before the development of dCas9-based editors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Kirsch JM, Ely S, Stellfox ME, Hullahalli K, Luong P, Palmer KL, Van Tyne D, Duerkop BA. Targeted IS-element sequencing uncovers transposition dynamics during selective pressure in enterococci. PLoS Pathog 2023; 19:e1011424. [PMID: 37267422 PMCID: PMC10266640 DOI: 10.1371/journal.ppat.1011424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/14/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
Insertion sequences (IS) are simple transposons implicated in the genome evolution of diverse pathogenic bacterial species. Enterococci have emerged as important human intestinal pathogens with newly adapted virulence potential and antibiotic resistance. These genetic features arose in tandem with large-scale genome evolution mediated by mobile elements. Pathoadaptation in enterococci is thought to be mediated in part by the IS element IS256 through gene inactivation and recombination events. However, the regulation of IS256 and the mechanisms controlling its activation are not well understood. Here, we adapt an IS256-specfic deep sequencing method to describe how chronic lytic phage infection drives widespread diversification of IS256 in E. faecalis and how antibiotic exposure is associated with IS256 diversification in E. faecium during a clinical human infection. We show through comparative genomics that IS256 is primarily found in hospital-adapted enterococcal isolates. Analyses of IS256 transposase gene levels reveal that IS256 mobility is regulated at the transcriptional level by multiple mechanisms in E. faecalis, indicating tight control of IS256 activation in the absence of selective pressure. Our findings reveal that stressors such as phages and antibiotic exposure drives rapid genome-scale transposition in the enterococci. IS256 diversification can therefore explain how selective pressures mediate evolution of the enterococcal genome, ultimately leading to the emergence of dominant nosocomial lineages that threaten human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Ely
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Madison E. Stellfox
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karthik Hullahalli
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Phat Luong
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Kelli L. Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
10
|
Lin PY, Chan SY, Stern A, Chen PH, Yang HC. Epidemiological profiles and pathogenicity of Vancomycin-resistant Enterococcus faecium clinical isolates in Taiwan. PeerJ 2023; 11:e14859. [PMID: 36855433 PMCID: PMC9968458 DOI: 10.7717/peerj.14859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
The emerging Vancomycin-resistant Enterococcus faecium (VRE-fm) is an opportunistic pathogen causing nosocomial infections. The identification of VRE-fm is important for successful prevention and control in healthcare settings. VRE-fm clinical isolates obtained from regional hospitals in northern Taiwan were characterized for antimicrobial susceptibility, virulence genes and biofilm production. Most isolates exhibited multi-drug resistance and carried the virulence genes, esp and hyl. While all isolates produce biofilms, those isolates that carried esp exhibited greater biofilm production. Isolates with different virulence gene carriages were examined for pathogenicity by using a nematode model, Caenorhabditis elegans, for determining microbial-host interactions. The survival assay showed that C. elegans was susceptible to Linezolid-resistant VRE-fm isolates with hyl. Combining the molecular epidemiological profiles regarding pathogenesis in C. elegans can serve as a guide for physicians in limiting opportunistic infections caused by VRE-fm.
Collapse
Affiliation(s)
- Pei-Yun Lin
- Department of Laboratory, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan
| | - Shang-Yih Chan
- Department of Internal Medicine, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan,Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan,Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, USA
| | - Po-Hsiang Chen
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| |
Collapse
|
11
|
Michaux C, Gerovac M, Hansen EE, Barquist L, Vogel J. Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens. MICROLIFE 2022; 4:uqac027. [PMID: 37223738 PMCID: PMC10117718 DOI: 10.1093/femsml/uqac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/25/2023]
Abstract
Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA-protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA-protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA-protein complexes such as the 6S RNA-RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/).
Collapse
Affiliation(s)
- Charlotte Michaux
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Elisabeth E Hansen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| |
Collapse
|
12
|
Wasselin V, Budin-Verneuil A, Rincé I, Léger L, Boukerb AM, Hartke A, Benachour A, Riboulet-Bisson E. The enigmatic physiological roles of AhpCF, Gpx, Npr and Kat in peroxide stress response of Enterococcus faecium. Res Microbiol 2022; 173:103982. [PMID: 35931249 DOI: 10.1016/j.resmic.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
In this work, the physiological roles of the primary peroxide scavenging activities of Enterococcus faecium AUS0004 strain were analysed. This healthcare-associated pathogen harbours genes encoding putative NADH peroxidase (Npr), alkyl hydroperoxide reductase (AhpCF), glutathione peroxidase (Gpx) and manganese-dependent catalase (Mn-Kat). Gene expression analyses showed that npr and kat genes are especially and significantly induced in cells treated with hydrogen peroxide (H2O2) and cumene hydroperoxide (CuOOH), which suggested an important function of these enzymes to protect E. faecium against peroxide stress. Mutants affected in one or several predicted anti-oxidative activities mentioned above showed that neither the peroxidases nor the catalase are implicated in the defence against peroxide challenges. However, our investigations allowed us to show that Npr is responsible for the degradation of approximately 45% of metabolically derived H2O2 which avoids accumulation of the peroxide to lethal concentrations.
Collapse
Affiliation(s)
- Valentin Wasselin
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Aurélie Budin-Verneuil
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Isabelle Rincé
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Loïc Léger
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Amine Mohamed Boukerb
- Normandie Univ, LMSM EA4312-Microbiology Signals and Microenvironment, 27000 Evreux, France.
| | - Axel Hartke
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Abdellah Benachour
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Eliette Riboulet-Bisson
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| |
Collapse
|
13
|
Soussan D, Salze M, Ledormand P, Sauvageot N, Boukerb A, Lesouhaitier O, Fichant G, Rincé A, Quentin Y, Muller C. The NagY regulator: A member of the BglG/SacY antiterminator family conserved in Enterococcus faecalis and involved in virulence. Front Microbiol 2022; 13:1070116. [PMID: 36875533 PMCID: PMC9981650 DOI: 10.3389/fmicb.2022.1070116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/21/2022] [Indexed: 02/19/2023] Open
Abstract
Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract but also a major nosocomial pathogen. This bacterium uses regulators like BglG/SacY family of transcriptional antiterminators to adapt its metabolism during host colonization. In this report, we investigated the role of the BglG/SacY family antiterminator NagY in the regulation of the nagY-nagE operon in presence of N-acetylglucosamine, with nagE encoding a transporter of this carbohydrate, as well as the expression of the virulence factor HylA. We showed that this last protein is involved in biofilm formation and glycosaminoglycans degradation that are important features in bacterial infection, confirmed in the Galleria mellonella model. In order to elucidate the evolution of these actors, we performed phylogenomic analyses on E. faecalis and Enterococcaceae genomes, identified orthologous sequences of NagY, NagE, and HylA, and we report their taxonomic distribution. The study of the conservation of the upstream region of nagY and hylA genes showed that the molecular mechanism of NagY regulation involves ribonucleic antiterminator sequence overlapping a rho-independent terminator, suggesting a regulation conforming to the canonical model of BglG/SacY family antiterminators. In the perspective of opportunism understanding, we offer new insights into the mechanism of host sensing thanks to the NagY antiterminator and its targets expression.
Collapse
Affiliation(s)
- Diane Soussan
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Marine Salze
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Pierre Ledormand
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Nicolas Sauvageot
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Amine Boukerb
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France.,Plateforme de Génomique, CBSA EA4312, Normandie Université, UNIROUEN, Évreux, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Alain Rincé
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Cécile Muller
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
14
|
Pinatih KJP, Suardana IW, Sukrama IDM, Swacita IBN, Putri RK. Biochemical and molecular identification of Gram-positive isolates with β-hemolysis activity isolated from the nasal swab of pigs during the human meningitis outbreak in Badung Regency, Bali-Indonesia. Vet World 2022; 15:140-146. [PMID: 35369582 PMCID: PMC8924401 DOI: 10.14202/vetworld.2022.140-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background and Aim The nasal cavity of a pig serves as an entry point and a habitat for the colonization of commensal microbes and pathogenic bacteria. Based on biochemical and serological tests, Streptococcus b-hemolytic Group C was identified as the Gram-positive bacteria, which resulted in the 1994 outbreak and death of thousands of pigs in Bali. Furthermore, this agent is zoonotic and frequently results in the development of meningitis lesions in the infected pig. Recently, a meningitis outbreak in humans was also reported after the consumption of pig-derived foods at Sibang Kaja, Badung-Bali. This study aimed to identify and characterize Gram-positive β-hemolytic organisms collected from nasal swab of pigs from the outbreak area, as well as to compare API Kit and 16S rRNA gene analysis methods. Materials and Methods This study commenced with the cultivation of two isolates, Punggul Swab Nasal (PSN) 2 and PSN 19, which were characterized by β-hemolysis activity. These samples were then conventionally and molecularly identified using Kit API 20 Strep and 16S ribosomal RNA (rRNA) gene primers, respectively. Results Using the Kit API 20 Strep, both isolates were identified as Enterococcus faecium, which was previously classified as Group D Streptococci. Based on the 16S rRNA gene sequencing, PSN 2 and PSN 19 were molecularly confirmed to have 99 and 98.1% similarities with E. faecium (NR042054), respectively. Furthermore, both isolates share the same clade in the phylogenetic tree analysis. Conclusion Using Kit API 20 Strep and 16S rRNA gene analysis, the PSN 2 and PSN 9 Gram-positive isolates with β-hemolysis activity from pig nasal swabs were identified as E. faecium.
Collapse
Affiliation(s)
- K. J. Putra Pinatih
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - I. W. Suardana
- Department of Preventive Veterinary Medicine, Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - I. D. M. Sukrama
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - I. B. N. Swacita
- Department of Preventive Veterinary Medicine, Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - R. K. Putri
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| |
Collapse
|
15
|
Activity of CcpA-Regulated GH18 Family Glycosyl Hydrolases That Contributes to Nutrient Acquisition and Fitness in Enterococcus faecalis. Infect Immun 2021; 89:e0034321. [PMID: 34424752 DOI: 10.1128/iai.00343-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of Enterococcus faecalis to colonize host anatomical sites is dependent on its adaptive response to host conditions. Three glycosyl hydrolase gene clusters, each belonging to glycosyl hydrolase family 18 (GH18) (ef0114, ef0361, and ef2863), in E. faecalis were previously found to be upregulated under glucose-limiting conditions. The GH18 catalytic domain is present in proteins that are classified as either chitinases or β-1,4 endo-β-N-acetylglucosaminidases (ENGases) based on their β-1,4 endo-N-acetyl-β-d-glucosaminidase activity, and ENGase activity is commonly associated with cleaving N-linked glycoprotein, an abundant glycan structure on host epithelial surfaces. Here, we show that all three hydrolases are negatively regulated by the transcriptional regulator carbon catabolite protein A (CcpA). Additionally, we demonstrate that a constitutively active CcpA variant represses the expression of CcpA-regulated genes irrespective of glucose availability. Previous studies showed that the GH18 catalytic domains of EndoE (EF0114) and EfEndo18A (EF2863) were capable of deglycosylating RNase B, a model high-mannose-type glycoprotein. However, it remained uncertain which glycosidase is primarily responsible for the deglycosylation of high-mannose-type glycoproteins. In this study, we show by mutation analysis as well as a dose-dependent analysis of recombinant protein expression that EfEndo18A is primarily responsible for deglycosylating high-mannose glycoproteins and that the glycans removed by EfEndo18A support growth under nutrient-limiting conditions in vitro. In contrast, IgG is representative of a complex-type glycoprotein, and we demonstrate that the GH18 domain of EndoE is primarily responsible for the removal of this glycan decoration. Finally, our data highlight the combined contribution of glycosidases to the virulence of E. faecalis in vivo.
Collapse
|
16
|
Wasselin V, Staerck C, Rincé I, Léger L, Budin-Verneuil A, Hartke A, Benachour A, Riboulet-Bisson E. Characterisation of the manganese superoxide dismutase of Enterococcus faecium. Res Microbiol 2021; 172:103876. [PMID: 34474124 DOI: 10.1016/j.resmic.2021.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The manganese superoxide dismutase (SodA) of E. faecium strain AUS0004 has been characterised. It is most closely related to Enterococcus hirae, Enterococcus durans, Enterococcus villorium, and Enterococcus mundtii with 100%, 91,55%, 90,85%, and 90,58% homology, respectively, but more distant from SodA of E. faecalis (81.68%). A sodA deletion mutant has been constructed. Compared to the parental strain, the ΔsodA mutant was affected in aerobic growth and more sensitive to hydrogen peroxide (H2O2), cumene hydroperoxide (CuOOH), and the superoxide anion (O2•-) generator menadione. The E. faecium strain AUS0004 is part of those bacteria accumulating H2O2 to high concentrations (around 5 mM) starting from late exponential growth phase. Accumulation of the peroxide was around 25% less in the mutant suggesting that this part of H2O2 is due to the dismutation of O2•- by SodA. The sodA gene of E. faecium AUS0004 was induced by oxygen, peroxides and menadione but the corresponding regulator remains hitherto unknown. Finally, we showed that SodA activity is important for virulence in the Galleria mellonella model.
Collapse
Affiliation(s)
- Valentin Wasselin
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Cindy Staerck
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Isabelle Rincé
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Loïc Léger
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Aurélie Budin-Verneuil
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Axel Hartke
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Abdellah Benachour
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Eliette Riboulet-Bisson
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| |
Collapse
|
17
|
Ponath F, Tawk C, Zhu Y, Barquist L, Faber F, Vogel J. RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nat Microbiol 2021; 6:1007-1020. [PMID: 34239075 DOI: 10.1038/s41564-021-00927-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Franziska Faber
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany. .,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany. .,Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|