1
|
Han J, Tang H, Zhao S, Foley SL. Salmonella enterica virulence databases and bioinformatic analysis tools development. Sci Rep 2024; 14:25228. [PMID: 39448688 PMCID: PMC11502889 DOI: 10.1038/s41598-024-74124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Salmonella enterica, a prominent foodborne pathogen, contributes significantly to global foodborne illnesses annually. This species exhibits significant genetic diversity, potentially impacting its infectivity, disease severity, and antimicrobial resistance. Whole genome sequencing (WGS) offers comprehensive genetic insights that can be utilized for virulence assessment. However, existing bioinformatic tools for studying Salmonella virulence have notable limitations. To address this gap, a Salmonella Virulence Database with a non-redundant, comprehensive list of putative virulence factors was constructed. Two bioinformatic analysis tools, Virulence Factor Profile Assessment and Virulence Factor Profile Comparison tools, were developed. The former provides data on similarity to the reference genes, e-value, and bite score, while the latter assesses the presence/absence of virulence genes in Salmonella isolates and facilitates comparison of virulence profiles across multiple sequences. To validate the database and associated bioinformatic tools, WGS data from 43,853 Salmonella isolates spanning 14 serovars was extracted from GenBank, and WGS data previously generated in our lab was used. Overall, the Salmonella Virulence database and our bioinformatic tools effectively facilitated virulence assessment, enhancing our understanding of virulence profiles among Salmonella isolates and serovars. The public availability of these resources will empower researchers to assess Salmonella virulence comprehensively, which could inform strategies for pathogen control and risk evaluations associated with human illnesses.
Collapse
Affiliation(s)
- Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| | - Hailin Tang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, Food and Drug Administration, Laurel, MD, 20708, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| |
Collapse
|
2
|
Krishnakant Kushwaha S, Wu Y, Leonardo Avila H, Anand A, Sicheritz-Pontén T, Millard A, Amol Marathe S, Nobrega FL. Comprehensive blueprint of Salmonella genomic plasticity identifies hotspots for pathogenicity genes. PLoS Biol 2024; 22:e3002746. [PMID: 39110680 PMCID: PMC11305592 DOI: 10.1371/journal.pbio.3002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Yi Wu
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Hugo Leonardo Avila
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas, FIOCRUZ Paraná, Brazil
| | - Abhirath Anand
- Department of Computer Sciences and Information Systems, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Andrew Millard
- Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Richards AK, Kue S, Norris CG, Shariat NW. Genomic and phenotypic characterization of Salmonella enterica serovar Kentucky. Microb Genom 2023; 9:001089. [PMID: 37750759 PMCID: PMC10569734 DOI: 10.1099/mgen.0.001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Non-typhoidal Salmonella are extremely diverse and different serovars can exhibit varied phenotypes, including host adaptation and the ability to cause clinical illness in animals and humans. In the USA, Salmonella enterica serovar Kentucky is infrequently found to cause human illness, despite being the top serovar isolated from broiler chickens. Conversely, in Europe, this serovar falls in the top 10 serovars linked to human salmonellosis. Serovar Kentucky is polyphyletic and has two lineages, Kentucky-I and Kentucky-II; isolates belonging to Kentucky-I are frequently isolated from poultry in the USA, while Kentucky-II isolates tend to be associated with human illness. In this study, we analysed whole-genome sequences and associated metadata deposited in public databases between 2017 and 2021 by federal agencies to determine serovar Kentucky incidence across different animal and human sources. Of 5151 genomes, 90.3 % were from isolates that came from broilers, while 5.9 % were from humans and 3.0 % were from cattle. Kentucky-I isolates were associated with broilers, while isolates belonging to Kentucky-II and a new lineage, Kentucky-III, were more commonly associated with cattle and humans. Very few serovar Kentucky isolates were associated with turkey and swine sources. Phylogenetic analyses showed that Kentucky-III genomes were more closely related to Kentucky-I, and this was confirmed by CRISPR-typing and multilocus sequence typing (MLST). In a macrophage assay, serovar Kentucky-II isolates were able to replicate over eight times better than Kentucky-I isolates. Analysis of virulence factors showed unique patterns across these three groups, and these differences may be linked to their association with different hosts.
Collapse
Affiliation(s)
- Amber K. Richards
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Song Kue
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Connor G. Norris
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Nikki W. Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| |
Collapse
|
4
|
Salaheen S, Kim SW, Haley BJ, Van Kessel JAS. Differences between the global transcriptomes of Salmonella enterica serovars Dublin and Cerro infecting bovine epithelial cells. BMC Genomics 2022; 23:498. [PMID: 35804292 PMCID: PMC9270791 DOI: 10.1186/s12864-022-08725-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The impact of S. enterica colonization in cattle is highly variable and often serovar-dependent. The aim of this study was to compare the global transcriptomes of highly pathogenic bovine-adapted S. enterica serovar Dublin and the less pathogenic, bovine-adapted, serovar Cerro during interactions with bovine epithelial cells, to identify genes that impact serovar-related outcomes of S. enterica infections in dairy animals. Result Bovine epithelial cells were infected with S. enterica strains from serovars Dublin and Cerro, and the bacterial RNA was extracted and sequenced. The total number of paired-end reads uniquely mapped to non-rRNA and non-tRNA genes in the reference genomes ranged between 12.1 M (Million) and 23.4 M (median: 15.7 M). In total, 360 differentially expressed genes (DEGs) were identified with at least two-fold differences in the transcript abundances between S. Dublin and S. Cerro (false discovery rate ≤ 5%). The highest number of DEGs (17.5%, 63 of 360 genes) between the two serovars were located on the genomic regions potentially associated with Salmonella Pathogenicity Islands (SPIs). DEGs potentially located in the SPI-regions that were upregulated (≥ 2-fold) in the S. Dublin compared with S. Cerro included: 37 SPI-1 genes encoding mostly Type 3 Secretion System (T3SS) apparatus and effectors; all of the six SPI-4 genes encoding type I secretion apparatus (siiABCDEF); T3SS effectors and chaperone (sopB, pipB, and sigE) located in SPI-5; type VI secretion system associated protein coding genes (sciJKNOR) located in SPI-6; and T3SS effector sopF in SPI-11. Additional major functional categories of DEGs included transcription regulators (n = 25), amino acid transport and metabolism (n = 20), carbohydrate transport and metabolism (n = 20), energy production and metabolism (n = 19), cell membrane biogenesis (n = 18), and coenzyme transport and metabolism (n = 15). DEGs were further mapped to the metabolic pathways listed in the KEGG database; most genes of the fatty acid β-oxidation pathway were upregulated/uniquely present in the S. Dublin strains compared with the S. Cerro strains. Conclusions This study identified S. enterica genes that may be responsible for symptomatic or asymptomatic infection and colonization of two bovine-adapted serovars in cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08725-z.
Collapse
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA.
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| |
Collapse
|
5
|
Vaid RK, Thakur Z, Anand T, Kumar S, Tripathi BN. Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS One 2021; 16:e0255612. [PMID: 34411120 PMCID: PMC8375982 DOI: 10.1371/journal.pone.0255612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.
Collapse
Affiliation(s)
- Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Sanjay Kumar
- Bacteriology Laboratory, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | | |
Collapse
|